Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

A Theoretical Model for the Control of Color Degradation and Microbial Spoilage Occurring in Food Convective Drying

S. Curcio[1], M. Aversa[1]
[1]University of Calabria, Department of Engineering Modeling, Rende, Cosenza, Italy

The aim of this work was the development of a predictive model aimed at identifying a proper control strategy of food drying process. In particular, it was intended to determine the effect of operating conditions both on the color degradation, chosen as a reference quality parameter, and on the microbial spoilage occurring during potatoes drying. A transport model, accounting for the ...

Flow of Dry Foam in a Pipe

M. Divakaran[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Due to the coupling of foam flow with foam generation step, the earlier studies on foam flow have not led to consistent results. An increase in flow rate to obtain ?P vs. Q data changes the foam under investigation itself. The controlled experiments carried out earlier in our group show that ?P increases with flow rate as Q^2/3, a weaker dependence than that known for laminar flow or plug flow ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...

CFD Analysis of a Printed Circuit Heat Exchanger

K. Wegman [1], X. Sun [1],
[1] Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, OH, USA

In this experiment, the performance of a Printed Circuit Heat Exchanger (PCHE) was studied using COMSOL Multiphysics® software. PCHEs are diffusion bonded heat exchangers containing semicircular, chemically etched flow paths. Helium was used as the working fluid on both the hot and cold sides. A simplified model was used in the simulation, and the results were compared to experimental results. ...

Towards a Microscopic Model for Species Transport in Lithium-Sulphur Cells

Geraint Minton [1], Rajlakshmi Purkayastha [1], Laura O’Neill [1], Sylwia Walus [1], Mark Wild [1], Monica Marinescu [2], Teng Zhang [2], Gregory Offer [2],
[1] Oxis Energy Ltd, Abingdon, Oxfordshire, UK
[2] Mechanical Engineering Department, Imperial College, London, UK

Lithium-sulphur (Li-S) batteries have the potential to surpass the energy storage capability of Li-ion batteries due to their high theoretical gravimetric energy density of 2700 Wh/kg. However, the processes which drive the system behaviour are much more complex than those in a Li-ion cell, meaning that controlling them to realise energy densities much above 350 Wh/kg is challenging. In a Li ...

Simulation of Manufacturing Process of Ceramic Matrix Composites

S. Yushanov, J. Crompton, and K. Koppenhoefer
ACES of Columbus, LLC, Columbus, OH, USA

Improved performance of aeroengines requires the development of new manufacturing technologies for ceramic matrix composites (CMCs). This has been simulated using COMSOL Multiphysics. Specialized simulation technologies have been developed to describe the infiltration of molten material into a ceramic perform. The physical phenomena considered in the analysis includes: unsaturated flow, ...

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann[1], M. L. Sentis[1], B. J. Graupner[1], A.-K. Leuz[1], C. Belardinelli[2]
[1]Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland
[2]Kantonsschule Solothurn, Solothurn, Switzerland

Introduction: The sectoral plan that defines the procedure and criteria of site selection for deep geological repositories for all categories of waste (high-level and low- and intermediate-level waste) in Switzerland started in 2008 and will last for about ten years. ENSI (Swiss Nuclear Safety Inspectorate) is in charge of reviewing the proposals and safety assessments for geological ...

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt (flux) in order to improve the transport of magnesium vapor out of the flux and achieve chemical homogeneity in ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

Solid State Transport of Reactive Charged Particles: Application to Metal Oxidation

P. Buttin[1], B. Malki[1], P. Barberis[2], and B. Baroux[1]
[1]SIMAP/groupe SIR, CNRS, France
[2]AREVA - AREVA NP - CEZUS Research Center, France

This paper studies multicomponent transport through zirconia, assuming a chemical reaction involving electrons and oxygen vacancies defects. Classically, according to the Wagner theory for ambipolar diffusion, the electroneutrality condition in the oxide is considered. Therefore three constraints must be satisfied on the transport problem: oxide stoichiometry, electroneutrality and the source ...