Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Modeling Flow and Deformation during Hot Air Puffing of Single Rice Kernels

T. Gulati[1], A. Datta[1]
[1]Cornell University, Ithaca, NY, USA

When rice is subjected to intense heating, it results in rapid evaporation of liquid water to vapor. As a consequence, large pressures are generated within the kernel in a span of 15s resulting in large volume changes causing the kernel to puff rapidly. Under suitable conditions, the ratio of initial volume to volume after puffing could be as high as 10. Rice puffing process is a complex ...

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly - new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes ...

Using COMSOL Multiphysics® Software for Benchmarking Problems in Cell Migration

M. Nickaeen [1], I. L. Novak [1], A. Mogilner [2], B. M. Slepchenko [1],
[1] Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
[2] Courant Institute and Department of Biology, New York University, New York, NY, USA

A recently published conservative algorithm for simulating reactions and transport in moving domains have been extended to models in which cell kinematics are coupled with intracellular dynamics. For this, the method that combines a Eulerian approach with tracking an explicit boundary was linked to FronTier, a robust front-tracking technique. The extended algorithm was validated using a set of ...

Computational Evaluation of Improved Anaerobic Digestion Reactor Designs

A. A. Forbis-Stokes [1], M. A. Deshusses [1],
[1] Duke University, Durham, NC, USA

The purpose of this study was to investigate the impact on number of baffles placed in horizontal- or vertical-alignment of an anaerobic baffled reactor (HABR and ABR, respectively). Computational fluid dynamics was used to evaluate hydraulic performance of each and determine what number of compartments should be used to optimize reactor volume while adding minimal complexity. The findings ...

Computational Science and Engineering at DuPont

R. Nopper
Dupont Engineering
Research & Technology
Wilmington, DE

Rick has a BS in Physics, a ScM in Geological Sciences, and a PhD in Physics. He worked at Air Force Geophysics Laboratory, Conoco Petroleum Exploration Research, and, since 1989, has been at the DuPont Experimental Station. In this industrial setting, Rick has had opportunity to work on a great diversity of problems ranging from traditional engineering studies, using commercial finite-element ...

Model of a Heavy Metal Adsorption System using the S-Layer of Bacillus Sphaericus

J. Orjuela, and A. González
Dept. de Ingeniería Química Facultad de Ingeniería
Universidad de los Andes
Bogotá
Colombia

A bidimensional and pseudo homogenous model was proposed for the study of mass transfer in the bioadsorption process of chromium VI in the S-layer of immobilized Bacillus sphaericus in a packed column. The implementation of such a model in COMSOL Multiphysics will be explained in detail and the final results presented. These include chromium concentration profiles along the column and its ...

Diffuse Interface Models for Metal Foams

B. Chinè[1], M. Monno[2], E. Repossi[3], M. Verani[3]
[1]Laboratorio MUSP Piacenza, Italy; ITCR, Esc. Ciencia e Ing. Materiales, Cartago, Costa Rica
[2]Laboratorio MUSP, Piacenza, Italy; Politecnico di Milano, Dip. Meccanica, Milano, Italy
[3]Politecnico di Milano, MOX-Dip. Matematica, Milano, Italy

The foaming process of a metal is a complex operation which needs to be closely controlled in order to guarantee the wanted properties, by avoiding the formation of defects in the structure of the material. In this work we use COMSOL Multiphysics® version 4.3b and apply the diffuse interface methods of the phase field technique available in the CFD module.To analyze a practical case, foams ...

Chemical Reactions at Interfaces During Droplet Formation in Microchannels

Simeon Cavadias [1], Cédric Guyon [2], Gerrardo Vera De la Cruz [3],
[1] Institut Pierre-Gilles de Gennes (IPGG) - UPMC, France
[2] Chimie-ParisTech - Institut Pierre-Gilles de Gennes (IPGG) , France
[3] Master Nuclear Energy, ISTN (Saclay), France

Emulsions, small liquid droplets of oil in water or water in oil, find wide application in, pharmaceutical products, fine chemicals, analytical chemistry. Microfluidic devices allow creation of uniform droplets with a tight distribution. The COMSOL Multiphysics® software model presented here is an extension of the tutorial “Droplet Breakup in a T- junction”. In this tutorial uniform droplets ...

Modeling of Expanding Metal Foams - new

B. Chinè[1,2], M. Monno[3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications. They are characterized by a cellular structure represented by a metal or metal alloy and gas voids inside (Fig.1). A common metallic cellular material is aluminum foam which can be produced metallurgically by heating a precursor, made of aluminum alloy and TiH2 as foaming agent, in a furnace. In this case, the foaming ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...