Quick Search

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Modeling of Transport Phenomena in Gas Tungsten Arc Welding of Ni to 304 Stainless Steel

A. Bahrami[1], D. K. Aidun[1]
[1]MAE Department, Clarkson University, Potsdam, NY, USA

COMSOL Multiphysics® is used to simulate the transport phenomena in arc welding of Nickel to 304SS. Electric Currents (ec) and Magnetic Fields (mf) are used to solve for the Lorentz force which is one of the volume forces. Laminar Flow (spf) is used to simulate flow field. The Lorentz and buoyancy forces are applied as volume forces to the fluid domain. Marangoni effect also is applied to the ...

Submarine Gas Hydrate Reservoir Simulations - A Gas/Liquid Fluid Flow Model for Gas Hydrate Containing Sediments - new

S. Schlüter[1], T. Hennig[1], G. Janicki[1], G. Deerberg[1]
[1]Fraunhofer UMSICHT, Oberhausen, Germany

In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing methane by depressurization and/or by injecting CO2 is studied in the frame of the research project SUGAR. ...

Two-Phase Flow and Multiphysics Simulations in COMSOL

Dr. Singh has been working at the Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai since 2000. He has a Ph.D. from the Department of Chemical Engineering, IIT Bombay. He is a recipient of the Homi Bhabha Medal of Bhabha Atomic Research Centre in year 2000, Young Engineer Award of the Department of Atomic Energy in year 2008 and Award for Excellence in Thesis Work at IIT ...

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method - new

J. Hu[1], R. Jia[1], K. Wan[2], X. Xiong[3]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
[3]Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA

The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications. This paper studied the dynamic behavior of a droplet impinging onto solid dry surfaces with different surface wettability using the COMSOL Multiphysics® software. The simulation results were validated against experimental results. It was found that the Level Set method can predict the ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Modelling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds using COMSOL Multiphysics

S. Sachdev[1], S. Pareek[1], B. Mahadevan[1], A. Deshpande[1]
[1]Department of Chemical Engineering, BITS Pilani Goa Campus, Zuarinagar, Goa, India

Computational fluid dynamics has emerged as an advanced tool for studying detailed behavior of fluid flow and heat transfer characteristics in many chemical engineering applications like packed beds. Packed beds play an important role in various chemical industries. Hence understanding the fluid flow behavior and temperature variation in different sections of packed bed is essential. Geometric ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Claus Process Reactor Simulation

J. Plawsky[1],
[1]Rensselaer Polytechnic Institute, Troy, NY, USA

A model was developed to simulate the reaction, concentration field, flow field, and temperature distribution inside a Claus reactor for converting hydrogen sulfide to sulfur. The model considered two ideal reactors, a continuous stirred tank reactor and a plug flow reactor. As expected, two ideal reactors showed much different behaviors in terms of reactant conversion and operating ...

1 - 10 of 284 First | < Previous | Next > | Last