Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Simulator for Automotive Evaporative Emissions Restraint Systems

S. Schlüter [1], E. Schieferstein [1], T. Hennig [1], K. Meller [1],
[1] Fraunhofer UMSICHT, Oberhausen, Germany

Fuel vapor restraint systems are used in vehicles to avoid discharge of volatile hydrocarbons from fuel tanks. The topic of this paper is the proper operation of fuel vapor restraint systems depending on the composition of bioethanol-fuel-blends. Experimental data serve as input to a model built with COMSOL Multiphysics® to simulate the performance of fuel vapor restraint systems depending on ...

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, such as in the production of oil and gas, fluid viscometers, centrifugally-driven separation processes, ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Development of a User Interface for Design of SO2 Oxidation Fixed-Bed Reactors

A. Nagaraj [1], P. L. Mills [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply and hence to increase production, recycling and innovative clean technologies must be explored. From ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Modeling of Transport Phenomena in Laser Welding of Steels

A. Métais [1], S. Matteï [2], I. Tomashchuk [2], S. Gaied [1]
[1] ArcelorMittal, Montataire, France
[2] Laboratoire Interdisciplinaire Carnot de Bourgogne, Université Bourgogne Franche Comté, France

Laser Welded Blank solutions enable to reduce vehicles weight and to optimize their crash performances by means of simultaneous tuning of different grades and thicknesses. The present work aims to characterize numerically and experimentally materials mixing during laser welding. For better understanding of materials mixing based on convection-diffusion process in case of full penetrated laser ...

The Effects of the Contact Angle on the Dynamics of Water Droplet Impingement

J. Hu [1], X. Huang [2], X. Xiong [1], K. T. Wan [2],
[1] University of Bridgeport, Bridgeport, CT, USA
[2] Northeastern University, Boston, MA, USA

INTRODUCTION The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications, such as rain drops on automobile windshields, inkjet deposition and metal deposition in manufacturing processes, spray cooling of electronics, and spray coating for various applications. The droplet can spread, splash, and rebound after hitting a solid surface. Contact ...

COMSOL Multiphysics® Software and PV: A Unified Platform for Numerical Simulation of Solar Cells and Modules

M. Nardone [1],
[1] Bowling Green State University, Bowling Green, OH, USA

Introduction: Existing solar cell (photovoltaic, PV) device simulation software is either open source with limited capabilities (1D only) [1,2] or extremely expensive with obscure functionality [3]. PV researchers need an accessible and versatile simulation tool to optimize existing technologies and to reduce the time from concept to prototype for new technologies. This work demonstrates how ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting plates. The battery performance depends upon several parameters and its operating conditions. In this work we developed a model for a lithium iron phosphate battery and validated our results with experimental charge-discharge curves. We however note ...

COMSOL Multiphysics® Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

A. G. Dixon [1], D. S. Polcari [1], A. D. Stolo [1], M. Tomida [1],
[1] Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a specified flow rate. Effects of different catalysts, screen sizes and flow direction were simulated. Factors ...

1–10 of 405