Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Stress and Fatigue Analysis of Subsea Umbilical and Cable Systems

M.S. Yeoman[1], V. Sivasailam[1], T. Poole[3], S. Ingham[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[3]JDR Cable Systems, Littleport, Cambridgeshire, United Kingdom

With the ever changing energy requirements & demand for better communication links across the planet, subsea umbilical & cable requirements are becoming more stringent. Where longer service life at a lower cost is now expected from manufacturers. In addition to this, with the need to exploit more sustainable energy sources from offshore wind & wave, where extreme weather conditions are ...

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
Kolkata
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...

Nonlinear Mechanical Modeling of Thermoplastics

J. Bergstrom [1], N. Elabbasi [1],
[1] Veryst Engineering, Needham, MA, USA

The use of thermoplastic materials is increasing and it is becoming more important during the design process to accurately represent the non-linear material response in relevant loading conditions. The COMSOL Multiphysics® software supports advanced modeling capabilities for large deformation analyses, including contact and multiphysics couplings. It is now also possible to use advanced non ...

The Use of COMSOL Multiphysics® for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates

K. Howell[1], H. Georgiou[2], P. Petagna[3], G. Romagnoli[3]
[1]George Mason University, Fairfax, VA, USA
[2]Cyprus University of Technology (C.U.T), Limassol, Cyprus, EU
[3]CERN - The European Organization for Nuclear Research, Geneva, Switzerland, EU

The thermal management of silicon detectors and related electronics through micro-structured silicon cooling plates is gaining considerable attention for high precision particle trackers. Micro-fluidic circuits are etched in a silicon wafer, which is then bonded to a second wafer to obtain a cooling circuit. Because mono-crystalline silicon is structurally close in characteristics to brittle ...

Uncertainty of FEM Solutions Using a Nonlinear Least Squares and Design of Experiments Approach

J. T. Fong [1], N. A. Heckert [1], J. J. Filliben [1], P. V. Marcal [2], R. Rainsberger [3]
[1] National Institute of Standards and Technology, Gaithersburg, MD, USA
[2] MPACT Corp., Oak Park, CA, USA
[3] XYZ Scientific Applications, Inc., Livermore, CA, USA

Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to illustrate both approaches are given using the COMSOL RF Module (in an application of a MRI coil design) and ...

Dynamics of Slender Structures

K. Lund
Kurt Lund Consulting, Del Mar, CA , USA

The present work formulates the dynamics of a slender structure as a long beam. This results in a PDE that is fourth-order in space, and second order in time. In COMSOL the coupling method is used to decompose this problem into two second-order equations, one for displacements, and one for bending moments, which are then solved to obtain frequencies and mode shapes. For verification of ...

A Parametric Study on the Dynamic Behavior of Cable Supported Bridges Under Moving Loads Affected by Accidental Failure Mechanisms

P. Lonetti[1], A. Pascuzzo[1], R. Sarubbo[1]
[1]Department of Structural Engineering, University of Calabria, Rende, Cosenza, Italy

The dynamic behavior of cable supported bridges subjected to moving loads and affected by corrosion and accidental failure mechanism in the cable suspension system is investigated. The different types of cable supported bridges are distinctively characterized by the configuration of the cable system [1]. The suspension system comprises a parabolic main cable and vertical hanger cables connecting ...

Time-Dependent Thermal Stress and Distortion Analysis During Additive Layer Manufacturing, by Powder Consolidation by Laser Heating

M.S. Yeoman[1], J. Sidhu[2]
[1]1. Continuum Blue Ltd., Tredomen Innovation & Technology Park, Tredomen, Ystrad Mynach, United Kingdom
[2]BAE Systems, Advanced Technology Centre, Bristol, United Kingdom

A time-dependent COMSOL Multiphysics model of an additive manufacture process, which uses powder consolidation by laser heating was developed, providing a platform to better understanding the manufacture process & provide a tool to reduce resulting distortion & optimization of an additive manufacture process. The model simulates a high intense laser energy source moving along a pre-defined time ...

Design of Pressure Measuring Cells Using the Unified Material Law

P. Aguirre[1], F. Figueroa[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Bayern, Germany

Pressure Sensors are widely used in the automotive industry. Their main use is the dynamic monitoring of pressure inside combustion engines. To achieve a good signal accuracy, the design of pressure sensors can be improved with FEM calculations of stress and strains on the measuring cell depending on their geometry and material properties. The geometry is adapted according to a special ...

Simulation of Thermomechanical Couplings of Viscoelastic Materials

F. Neff [1], T. Miquel [2], M. Johlitz [1],
[1] Universität der Bundeswehr München, Munich, Germany
[2] École polytechnique, Palaiseau, France

Using COMSOL Multiphysics® software, a new model was implemented with the Physics Builder functionality, which provides a thermomechanical coupling. It consists of two independent physics interfaces, one for the mechanical, viscoelastic behavior and one for the heat transfer. With the multiphysics coupling features it is now possible to add the effects of thermal expansion and dissipation or ...