Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Finite Element Analysis of Temperature and Viscosity Effects on Resonances in Thin-Film Bulk Acoustic Wave Resonators - new

G. Rughoobur[1], M. DeMiguel-Ramos[2], L. García-Gancedo[1], M. Clement[2], J. Olivares[2], T. Mirea[2], W. I. Milne[1], E. Iborra[2], A. J. Flewitt[1]
[1]University of Cambridge, Cambridge, UK
[2]Universidad Politécnica de Madrid, Madrid, Spain

The shear mode of film bulk acoustic resonators (FBARs) is preferred to the longitudinal mode owing to its lower acoustic losses in a liquid. However in addition to mass loading, the resonance is also affected by temperature and liquid viscosity. These two parameters can either be sensed or compensated using a layer of silicon dioxide, which has a unique temperature coefficient of elasticity. In ...

Aplicação de Elementos Finitos na Ortodontia

T. O. Bassani [1], T. Bassani [2], A. Andriguetto [1], F. Schneider [2],
[1] Instituto Latino Americano de Pesquisa e Ensino Odontológico - ILAPEO, Curitiba, PR, Brasil
[2] Universidade Tecnológica Federal do Paraná – UTFPR, Curitiba, PR, Brasil

O presente estudo visou a avaliação, por meio do método dos elementos finitos, das tensões geradas em um arco ortodôntico chamado de Arco de Retração Dupla Chave, também conhecido como DKL. Para isso foram modeladas as geometrias do arco DKL, dos bráquets e das coroas dentais, no software COMSOL Multiphysics®. O modelo criado tem como objetivo a substituição dos métodos tradicionais de ...

Multiscale Damage Detection in Conductive Composites

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited, Bangalore, India

Conductive Composites such as carbon fiber reinforced composites are increasingly used in safety critical aerospace applications. The catastrophic macro structural failure of composite structures initiates from a micro level failure event such as fiber breaks. The ability to detect damage early on can improve the safety level and reliability of composite structures. A multilevel self-sensing ...

Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading

S. Tuncdemir[1], W.M. Bradley[2]
[1]Solid State Ceramics, Williamsport, PA, USA
[2]QorTek, Williamsport, PA, USA

A piezoelectric transformer allows purely mechanical transfer and scaling of electrical energy via simultaneous utilization of both the direct and converse piezoelectric effects. This mechanical energy transfer enables a wide range of functional differences from typical magnetic-based electrical power transformers. Comparing to their electromagnetic counterparts, piezoelectric transformers are ...


高阁 [1][2], 刘震宇 [1],
[1] 中国科学院长春光学精密机械与物理研究所,长春,吉林,中国
[2] 中国科学院大学,北京,中国

In order to satisfy the requirements of modern range measuring technology, photoelectric theodolites gradually develop towards lightweight and minitype design. As a consequence, the mobile theodolite is becoming a hot spot recently. New requirements are raised for the theodolite base (Figure1), which is an essential part of photoelectric theodolites. Namely, the eigenfrequencies should be high ...

A Numerical Model for Transient Heat Conduction in Semi-Infinite  Solids Irradiated by a Moving Heat Source

N. Bianco[1], O. Manca[2], S. Nardini[2], and S. Tamburrino[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A numerical analysis on transient three-dimensional temperature distribution in a semi-infinite solid, irradiated by a moving Gaussian laser beam, is carried out numerically by means of the code COMSOL Multiphysics. The investigated workpiece is simply a solid. A laser source is considered moving with constant velocity along the motion direction. The convective heat transfer on the upper surface ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]University of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the Virtual Prototyping based on a COMSOL Multiphysics® simulation for a novel Microwave Fin Taper (FT) Spatial Power Combiner (SPC) Amplifier. The analyzed system is waveguide (WG) based, and uses FT Probes to convert the energy of a rectangular WG EM fundamental mode to a Microstrip Transmission Line TEM mode, in order to be amplified by a Solid State Power ...

A Numerical Study for Rubber Particles Collection Involved in New Thermoforming Composite Process Using COMSOL Multiphysics®

R. Carbone[1], V. Antonelli[2][3], A. Langella[1], and R. Marissen[3]

[1]Material and Production Engineering Department, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Institute of Lightweight Structures, Technische Universität München, München, Germany
[3]Design and Production of Composite Structure, Delft University of Technology, Delft, The Netherlands

This paper deal of the forming process applied to the thermoplastic composites. A new thermoforming process that uses rubber particles collection as flexible mould was presented and numerically modeled. A characterization of the rubber in particles form was previously performed to value the material parameters in the user-defined hyperelastic constitutive laws employed in the FEM (Finite Element ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...