Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Irrotational Motion of an Incompressible Fluid Past a Wing Section in an Unbounded Region

J. Russell[1]
[1]Florida Institute of Technology, Melbourne, FL, USA

Developers of numerical models who address the title problem face several hurdles, such as: (1), the need to formulate boundary conditions applicable in an unbounded region; (2), The need to specify conditions suitable to ensure a unique solution in a doubly connected region; and (3), The need to allow the interior boundary to have a sharp edge, such as a cusp. The aim of the work reported ...

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive simulation software to predict food safety and quality. The user interface allows the user to select the food, ...

Eigen and Coupled Modes on Nanoparticle Aggregate Arrays - new

M. Csete[1], A. Szalai[1], E. Csapó[2], A. Somogyi[1], I. Dékány[2]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2]MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Szeged, Hungary

Novel class of artificial optical antennas are of great interest in biosensing applications of nanoplasmonics due to their unique and tunable spectral properties. Silver colloid spheres covered with L-cysteine were studied experimentally by spectroscopy and TEM and numerically by a COMSOL Multiphysics® simulation. Experimental studies revealed that the Ag NP-Cys core-shell conjugates prefer to ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Multicomponent Diffusion Applied to Osmotic Dehydration - new

H. Cremasco[1], K. Angilelli[1], D. Borsato[1]
[1]Universidade Estadual de Londrina, Londrina, Paraná, Brazil

The transfer of sucrose and fructooligosaccharides to melon and water to solution was modeled based on generalized form of Fick’s second law for simultaneous diffusion and resolved by the finite element method using the software package COMSOL Multiphysics® software. The diffusion coefficients, the mass transfer coefficient and the Biot number were determined using the simplex optimization ...

Virtual Experiments: Numerical Computations as a Powerful Tool for Engineers

P. Schmitz[1], A. Cockx[2], S. Geoffroy[3], and J. Gunther[1]
[1]Biochemical Engineering Dpt., Université de Toulouse, Toulouse, France
[2]Chemical Engineering Dpt., Université de Toulouse, Toulouse, France
[3]Mechanical Engineering Dpt., Université de Toulouse, Toulouse, France

An undergraduate course is developed to initiate future engineers to multiphysics numerical simulation by approaching concrete cases in various fields such as: heat transfers, fluid flow, mechanics, chemistry and electrostatics. The so called “Virtual Experiments” course consists of four projects given successively to students. Each project lasts about ten hours. The major notions related to ...

Modeling the Collimator-Detector Scattering Using Stochastic Differential Equations and COMSOL

A. Jeremic[1], T. Farncombe[2], S. Liu[2], and Y. Abdul-Rehman[1]
[1]Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
[2]Department of Radiology, McMaster University, Hamilton, Ontario, Canada

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that uses gamma rays. It has been especially useful for bone scans, cardiac perfusion imaging, tumor scans and brain imaging. The main advantage of SPECT imaging is that it can target particular tissue receptors allowing one to focus on the imaging of the diseased tissue. In most cases Monte Carlo ...

Parameter Identification in Partial Integro-Differential Equations for Physiologically Structured Populations

S. Moenickes, O. Richter, and K. Schmalstieg
Institut für Geoökologie, Abt. Umweltsystemanalyse, Technische Universität Braunschweig, Germany

Continuous dynamic models, e.g. COMSOL based simulations, play – besides statistical or iterative methods – a mayor role in theoretical ecology; in forecasting and management, but also in systems analysis. Ecological issues generally comprise highly interacting agents and/or unknown side effects. Here we show how combining direct simulation with COMSOL with simple optimization tools ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A. Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only that these additional domains result in an increased number of degrees of freedom which are strictly ...

Highly Concentrated Solar Radiation Measurement by Means of an Inverse Method

L. Mongibello[1], N. Bianco[2], R. Fucci[1], F. Moscariello[2]
[1]ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
[2]DETEC - Università degli Studi di Napoli Federico II, Napoli, Italy

This work focuses on the numerical analysis conducted on the prototype sensor for the measurement of highly concentrated radiative heat fluxes, based on an inverse heat transfer method, realized at the ENEA Portici Research Center in collaboration with the DETEC department of the University of Naples Federico II. The estimates of highly concentrated radiative heat fluxes on the target surface of ...