Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

Multiphysics Software Applications in Reverse Engineering

W. Wang[1], K. Genc[2]
[1]University of Massachusetts, Lowell, MA, USA
[2]Simpleware, Exeter, United Kingdom

During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in reinventing the design details and manufacturing processes of an existing part in the absence of the original design ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

Modeling the Collimator-Detector Scattering Using Stochastic Differential Equations and COMSOL

A. Jeremic[1], T. Farncombe[2], S. Liu[2], and Y. Abdul-Rehman[1]
[1]Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
[2]Department of Radiology, McMaster University, Hamilton, Ontario, Canada

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that uses gamma rays. It has been especially useful for bone scans, cardiac perfusion imaging, tumor scans and brain imaging. The main advantage of SPECT imaging is that it can target particular tissue receptors allowing one to focus on the imaging of the diseased tissue. In most cases Monte Carlo ...

Topology Optimization of Dielectric Metamaterials Based on the Level Set Method Using COMSOL Multiphysics

M. Otomori, and S. Nishiwaki
Kyoto University

This presentation shows a level set-based topology optimization method for the structural design of negative permeability dielectric metamaterials incorporating the level set boundary expression based on the concept of the phase field method, and its optimization algorithm implemented by COMSOL Multiphysics. Furthermore, several design examples are provided to confi rm the usefulness of the ...

Simulation of Pumping Induced Groundwater Flow in Unconfined Aquifer Using Arbitrary Lagrangian-Eulerian Method

Y. Jin[1], E. Holzbecher[1], S. Ebneth[2]
[1]Department of Applied Geology, Georg-August-University, Göttingen, Germany
[2]Hoelscher Dewatering, Haren, Germany

A novel numerical method characterizing groundwater flow in unconfined aquifer is demonstrated. In contrast to the conventional method (Dupuit approach considering horizontal flow only), hydraulic head is simulated in horizontal and vertical directions. The new approach is introduced via developing a 2-D-axisymmetric model representing the vertical cross section of the aquifer. The model solves ...

Heat, Air, and Moisture (HAM) Modeling of Historic Windows

H.L. Schellen[1]
[1]Eindhoven University Of Technology, Eindhoven, The Netherlands

Windows are the thermal weakest places in the external envelop of buildings. This is true for historic windows with original single pane glazing in historic buildings. To reduce the energy consumption and to improve thermal comfort of historic buildings, replacing these windows by modern double glazed windows affects the authentic character of these buildings too much. One way to improve the ...

Fracture on Circuit Board Internal Layers Due to Thermal Stress on Soldered Pins

F. Figueroa[1], P. Aguirre[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

Circuit board failures are often ignored because they could be impreceptible. This simulation examines how internal layers around a soldered pin via subject to temperature changes during the soldering process are affected, show the forces involved and determine breaking points. A 2D thermo-mechanical model of a soldered pin is achieved in two simulation steps. First, a connecting pin already ...

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical resistances of realistic CPP-GMR devices and opens the possibility to study new device materials and designs.