Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Understanding Transport Phenomena Concepts in Chemical Engineering with COMSOL Multiphysics®

E. S. Vasquez [1],
[1] Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH, USA

Transport Phenomena in Chemical Engineering involves three key aspects: Momentum, Heat and Mass Transport. These areas are described by differential equations which are solved for a particular problem using independent or a set of combined equations (e.g., water flowing in a heated pipe). At an undergraduate level class, the advanced mathematics of partial differential equations, tensors and the ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Benchmark of COMSOL vs. ROXIE Codes for the Calculation of a Particle Accelerator Quadrupole

I. Rodriguez, and J. L. Munoz
ESS Bilbao
Bilbao, Spain

The field quality requirements of most particle accelerator magnets are very tight and, therefore, very precise simulations are needed to accurately calculate these devices. CERN\'s ROXIE code is widely used as a reference software to calculate normal conducting and superconducting magnets for particle accelerator applications. ROXIE uses the full vector potential coupled to the BEM-FEM ...

Modeling of Active Infrared Thermography for Defect Detection in Concrete Structures

S. Carcangiu[1], B. Cannas[1], G. Concu[2], N. Trulli[3]
[1]Department of Electric and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy
[3]Department of Architecture and Planning, University of Sassari, Alghero, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters related to heat transfer process through the building material. The Infrared Thermography Technique (IRT) has been applied. Experimental measurements have been carried out on a concrete structure with an inside ...

Comparison of User vs. COMSOL® Developed Automated Installation Verification of COMSOL Multiphysics® Software

M. W. Crowell [1],
[1] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Verifying that a local software installation performs as the developer intended is a potentially time consuming but necessary step for safety related codes. Automating this process not only saves time, but can increase reliability and scope of verification compared to ‘hand’ comparisons. We now have for comparison both a user-developed tool using LiveLink™ for MATLAB® and an app (in beta) built ...

Introduction to COMSOL based Modeling of Levitated Flywheel Rotor

A. Pilat
AGH University of Science and Technology
Kraków, Poland

This elaboration presents a pre-study on automatic rotor construction for the flywheel energy storage system dedicated to operate in the levitation mode. The optimization profile model is used as a basic profile source. The 3D flywheel shape is generated on the base of obtained profiles. Eigenfrequencies are calculated to validate the operation on rigid mode. A steel and aluminum based ...

Chaotic Behavior of the Airflow in a Ventilated Room

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Chaotic systems may lead to instability, extreme sensitivity and performance reduction. Therefore it is unwanted in many cases. Due to these undesirable characteristics of chaos in practical systems, it is important to recognize such a chaotic behavior. The existence of chaos has been discovered in several areas during the last 30 years. However, there is a lack of studies in relation with ...

Investigations on Hydrodynamic in Stirred Vessels for Educational Purposes

A. Egedy, T. Varga, and T. Chován
University of Pannonia
Department of Process Engineering
Veszprém, Hungary

With detailed hydrodynamic modelling of a system the critical parameters and operation limits can be determined. In the field of fluid dynamic and reactor engineering one of the most important aspects is the practical knowledge of future engineers and technicians. In our research several different reactor constructions and impeller configurations were modelled to achieve a better ...

Determination and Verification of the Forchheimer Coefficients for Ceramic Foam Filters using COMSOL CFD Modeling

M.W. Kennedy[1], K. Zhang[1], J.A. Bakken[1], R.E. Aune[1]
[1]Norwegian University of Science and Technology, Trondheim, Norway

Experiments have been conducted with water at velocities from ~0.015-0.77 m/s to determine the permeability of 50 mm thick commercially available 30, 40, 50 and 80 Pores Per Inch (PPI) Ceramic Foam Filters (CFF) used for liquid metal filtration. Measurements were made using two different setups, for use with the Forchheimer equation: 49 mm \"straight through\" and 101 mm diameter \"expanding ...

Time Dependent Dirac Equation FEM Solutions for Relativistic Quantum Mechanics

A. J. Kalinowski [1],
[1] Consultant, East Lyme, CT, USA

The paper illustrates the use of COMSOL (via the “Coefficient-Form PDE” option) for obtaining the relativistic quantum mechanics wave function Ψm(x,y,z,t), m=1,4 as a solution to the time dependent Dirac equations. Once having Ψm(x,y,z,t), it can be used to compute the probability density ρd=Σ|Ψm|2of a particle being at a specific point within the spatial field under consideration. Six problems ...