Quick Search

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Using COMSOL for Optimal Design of Engineering Barriers of Nuclear Waste Repositories

L.M. de Vries[1], A. Nardi[1], A.E. Idiart[1], P. Trinchero[1], J. Molinero[1], F. Vahlund[2], H. von Schenck[2]
[1]Amphos 21, Barcelona, Spain
[2]Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden

The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for final disposal of spent fuel and radioactive waste. SKB operates SFR, an underground waste repository in crystalline rock. The evolution of groundwater flow within the repository needs to be estimated considering different options for the design of the engineered barriers. The goal is to predict the effects of flow and ...

Accelerating R&D with COMSOL: A Personal Account

Erik Birgersson[1]

[1]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

This presentation gives an account of how COMSOL Multiphysics® software has helped to accelerate research and development. It has been used to simulate energy systems such as fuel cells, biomedical systems such as hydrogels and human skin, and monolithic catalytic converters. Each of these systems requires a mathematical model that can accurately represent the relevant physics, and which can be ...

Application of System Identification Methods to Implement COMSOL Models into External Simulation Environments

A.W.M. van Schijndel[1] and M. Gontikaki[1]

[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Full coupling of distributed parameter models, like COMSOL, with the lumped models often lead to very time-consuming simulation duration times. In order to improve the speed of the simulations, the idea of using system identification methods to implement the distributed parameters models of COMSOL into external simulation environments, is explored. It is concluded that the system identification ...

Shape Optimization of Electric and Magnetic System using Level Set Technique and Sensitivity Analysis

Y. Sun Kim, A. Weddemann, J. Jadidian, S. Khushrushahi, and M. Zahn
Dept. of Electrical Engineering and Computer Science
MIT
Cambridge, MA

The classical optimization method has been applied to many design problems for electromagnetic systems. One of its major difficulties is related to meshing problems arising from shape modifications. In order to circumvent these kinds of technical difficulties with moving mesh problems, several researches have tried to formulate shape optimization with fixed mesh analyses based on fixed grid ...

Photon Migration Through Multiple Layers of Biological Tissue

M.S. Yeoman[1], E. Sultan[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]College of Technological Studies, PAAET, Adailiyah, Kuwait

The modeling of light propagation through multiple layers of biological tissue are assessed & compared to the theoretical predictions by Perelman at al. [94 & 95] of the most-favorable-path (MFP). The MFP on which photons will be found can be obtained from the path of the net flux propagation using the diffusion equation. The diffusion equation is valid when studying diffuse light propagation, ...

Irrotational Motion of an Incompressible Fluid Past a Wing Section in an Unbounded Region

J. Russell[1]
[1]Florida Institute of Technology, Melbourne, FL, USA

Developers of numerical models who address the title problem face several hurdles, such as: (1), the need to formulate boundary conditions applicable in an unbounded region; (2), The need to specify conditions suitable to ensure a unique solution in a doubly connected region; and (3), The need to allow the interior boundary to have a sharp edge, such as a cusp. The aim of the work reported ...

Finite Element Analysis of Molecular Rydberg States

M.G. Levy[1], X. Liang[1], R.M. Stratt[1], and P.M. Weber[1]

[1]Department of Chemistry, Brown University, Providence, Rhode Island, USA

Identifying molecules requires associating molecular structures with their electronic energy levels. In this paper we introduce a novel technique for the calculation of molecular Rydberg levels. The technique allows for easy visualization of the associated wavefuntions to make unambiguous assignments. The value calculated for the 3p state of trimethylamine is most closely in agreement with recent ...

Fracture on Circuit Board Internal Layers Due to Thermal Stress on Soldered Pins

F. Figueroa[1], P. Aguirre[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

Circuit board failures are often ignored because they could be impreceptible. This simulation examines how internal layers around a soldered pin via subject to temperature changes during the soldering process are affected, show the forces involved and determine breaking points. A 2D thermo-mechanical model of a soldered pin is achieved in two simulation steps. First, a connecting pin already ...

Influência da Camada de Ar Sobre a Deformação de uma Embalagem de Líquido com Cartão Tipo LPB - new

I. Neitzel[1], K. B. Matos[1], L. R. Pesch[1]
[1]Faculdade de Telêmaco Borba - FATEB, Telêmaco Borba, Paraná, Brasil

As embalagens de produtos alimentícios são hoje em dia predominantemente feitas com cartão tipo LPB (Liquid Packaging Board) e usualmente estocadas de forma empilhada, tanto nas prateleiras como nos depósitos dos supermercados. O LPB é um compósito multicamadas de construção complexa, envolvendo, tipicamente, papel produzido com fibras virgens, polietileno e alumínio. O alimento líquido ...

Modeling the Collimator-Detector Scattering Using Stochastic Differential Equations and COMSOL

A. Jeremic[1], T. Farncombe[2], S. Liu[2], and Y. Abdul-Rehman[1]
[1]Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
[2]Department of Radiology, McMaster University, Hamilton, Ontario, Canada

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that uses gamma rays. It has been especially useful for bone scans, cardiac perfusion imaging, tumor scans and brain imaging. The main advantage of SPECT imaging is that it can target particular tissue receptors allowing one to focus on the imaging of the diseased tissue. In most cases Monte Carlo ...