Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design of Microwave Cavity for Non-Thermal Plasma Generation

N. Manivannan[1], W. Balachandran[1]
[1]Brunel University, Uxbridge, UK

Design of Microwave Resonance Cavity (MRC) to generate non-thermal plasma to treat NOx and SOx from marine diesel engine is presented in this paper. Microwave frequency of 2.45GHz is used generate the required plasma. A number of wave guides are used to transfer the microwave energy into to MRC from the microwave source. COMSOL multi-physics software is used to model the waveguides and to ...

Wireless Interaction of Neighboring Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski[1]
[1]Naval Undersea Warfare Center/ Division Newport, Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from two arms Archimedes spiral coils. The frequency spatial wavelengths relative to the coil dimensions are in a range where the electromagnetic Maxwell’s equations are solved numerically via the RF Module of COMSOL ...

Analysis of Microwave Radiation for Heating

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Microwave heating is an important process for many commercial, industrial and household applications. In microwave heating applications, the energy is introduced directly into the volume of the material. As a consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution. Thus, developing a uniform electromagnetic field inside the ...

Chiral surface plasmon polaritons on metallic nanowires

S. Zhang
Institute of Physics CAS

Chiral SPPs can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes. Chirality is preserved in the emitted photons, creating a subwavelength ¼ wave plate.

Numerical Study of the Scattering of a Short-Pulse Plane Wave by a Buried Sphere in a Lossy Medium

F. Frezza[1], F. Mangini[1], M. Muzi[2], P. Nocito[3], E. Stoja[1], N. Tedeschi[1]
[1]Department of Information Engineering, Electronics and Telecommunications, "La Sapienza" University of Rome, Rome, Italy
[2]Institute of Advanced Biomedical Imaging, "G. d'Annuzio" University Fondation, University "G. d'Annuzio" Chieti-Pescara, Chieti, Italy
[3]Istituto Superiore C.T.I., Communications Department, Ministry of Economic Development, Rome, Italy

The scattering by a buried sphere in the frequency domain with the use of the Finite Element Method (FEM) implemented by COMSOL Multiphysics, is analyzed. A short-pulse is used as an excitation with the spectrum spanning from 50 MHz to 1 GHz. In order to validate our results, a comparison with data available in the literature is presented, in the simple case of a perfectly-conducting (PEC) ...

Analysis and Design of Antennas for an Implantable Medical Device System for Functional Electrical Stimulation

H. Suri[1]
[1]Alfred Mann Foundation for Scientific Research, Valencia, CA, USA

This poster outlines the results of finite element analyses to study the antenna radiation pattern of an implanted medical device. Also presented are simulation results used to design an electrically small antenna for a portable control unit that communicates with the implants over the Medical Micropower Network Frequency Range [413 MHz to 457 MHz]. Alfred Mann Foundation’s Functional ...

Multiphysics Analysis of Normal Conducting RF Cavities for High Intensity Proton Accelerators

M. Hassan[1], I. Gonin[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Normal conducting cavities are typically used in the front end of proton accelerators to get the beam accelerated to velocities approximately a few tenths of the speed of light, where superconducting cavities can then be used to accelerate the beam to the speed of light. The warm part of a typical proton accelerator would contain a radio frequency quadrupole (RFQ) and several buncher cavities. ...

Optimization of Active Packaging for Microwaveable Food Products Using COMSOL Multiphysics®

S. Landa[1], A. Bardenstein[1]
[1]Danish Technological Institute, Taastrup, Denmark

Upon operation, the magnetron of a conventional microwave oven induces a pattern of standing electromagnetic waves in the oven cavity. Interactions with the field define the amount of energy absorbed in a part of a food object within the cavity. The well-known inhomogeneous heating produced in a microwave oven is partially an effect of the standing waves’ natural nodes and antinodes and ...

Assessment of the SNR, G-Factor and Relative B1- Fields of Medical Radiofrequency Arrays

G. Cook[1], F. Robb[2], M. Graves[1], D. Lomas[1]
[1]Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
[2]GE Healthcare Coils, Aurora, OH, USA

MRI relies upon a static magnetic field which creates a net magnetic moment from proton spins and radio-frequency fields are generated to excite this magnetic moment into a perpendicular plane, where it can be detected through the use of an array of conductive loops. The optimal size,shape and layout of these elements has been widely discussed in literature since the phased array's conception ...

Wireless Power and Communications for Implantable Biosensors

C. Romero[1], M. Mujeeb-U-Rahman[1]
[1]California Institute of Technology, Pasadena, CA, USA

Implantable biosensors have the potential to revolutionize the healthcare industry by allowing patients and their health care providers to continuously monitor blood pH levels, pCO2, proteins, metabolites, and a wide variety of other biomolecules. These devices need to operate completely wirelessly to be used for long term monitoring. Metal coils are attractive candidates for wireless power ...

Quick Search