Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Tunable MEMS Capacitor for RF Applications

H. S. Shriram[1], T. Nimje[1], D. Vakharia[1]
[1]BITS Pilani, Rajasthan, India

Radio Frequency MEMS devices have emerged to overcome the problem of high losses associated with semiconductors at high frequencies. A tunable MEMS capacitor is a micrometre-scale electronic device whose capacitance is controlled through different actuation mechanisms which govern the moving parts. It can have electrostatic or electrothermal actuators depending on the functional complexity and ...

Optical and Electrical Modeling of Three Dimensional Dye Sensitized Solar Cells

P. Guo[1]
[1]Northwestern University, Evanston, IL, USA

Dye sensitized solar cells (DSSCs) have received tremendous attention as alternative photon harvesting devices. While the sintered TiO2 nanoparticle network attached with dye molecules achieves efficient photon absorption, the electrons have to diffuse through the long TiO2 network to reach the contact, resulting in a high electron density and thus increased recombination. Extensive research ...

3D Electromagnetic Field Simulation in Microwave Ovens: A Tool to Control Thermal Runaway

T. Santos[1], L.C. Costa[1,2], M. Valente[1,2], J. Monteiro[1,2], and J. Sousa[3]
[1]University of Aveiro, Portugal
[2]I3N, Aveiro, Portugal
[3]TEKA Portugal S.A., Ílhavo, Portugal

In microwave heating applications, the energy is introduced directly into the volume of the material and as consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution along it. That is, the non uniformity of the heating is a potential problem with serious consequences. Thermal runaway is the most critical, in materials with temperature ...

Enhancement of Terahertz Emission by AuGe Nanopatterns

H. Surdi[1], A. Singh[1], S. S. Prabhu [1]
[1]Tata Institute of Fundamental Research, Homi Bhabha 
Road, Mumbai,India

Since the advent of Terhertz(THz) technology, improving the THz emission power has been one of the major research goal. One of the methods to increase the THz emission power is to increase the coupling of excitation laser light to the dielectric substrate.The field of nano-plasmonics exploits light-matter interactions at nanometer scale. With the help of metallic nano-structure at ...

A Novel Mechanical Stress Measurement Method Applied to Wind Turbine Rotor Blades

A.H. Hegab[1], J.P. Kaerst[1]
[1]HAWK, University of Applied Sciences and Arts, Goettingen, Germany

Rotor blades for wind turbines are made of GFRP material. They have to be designed to withstand wind and weather over their approximately 20 years of lifetime. The ability to monitor the mechanical stress is crucial in order to reduce maintenance costs and to maximize operational availability. This paper presents the combination of SPICE® and COMSOL Multiphysics®, in order to reduce ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Enhanced Surface Plasmon Polariton Propagation Induced by Active Dielectrics - new

M. Mattheakis[1], C. Athanasopoulos[1], G. P. Tsironis[1]
[1]University of Crete, Heraklion, Greece

We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL Multiphysics® software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a ...

Self-Consistent Modeling of Thin Conducting Wires and Their Interaction with the Surrounding Electromagnetic Field

G. Eriksson[1]
[1]ABB AB, Corporate Research, Västerås, Sweden

It is demonstrated how the RF Module of COMSOL Multiphysics® can be used to approximately model thin conducting wires or cables and how they interact with a surrounding electromagnetic field. Despite being non-stringent the method can reasonably well predict currents induced by an applied electromagnetic field in wires, and networks of wires, as well as fields radiated from current-carrying ...

Finite-element Analysis of Properties in Real and Idealized Photonic Crystal Fibres, Application to Supercontinuum Generation

Gérôme, F., Viale, P., Tombelaine, V., Leproux, P., Auguste, J.L., Février, S., Blondy, J.M., Couderc, V.
IRCOM, CNRS UMR 6615, Limoges, France

Using a full-vector finite-element method, we calculate modal properties in index-guiding photonic crystal fibres. The influence of the deformation of the geometry in actual fibre structures is evaluated and compared to the idealized-model. These results are applied to the supercontinuum generation. Moreover, development of MATLAB softwares for FEMLAB 3.1 are presented.

Modeling Microwave Chiral Material Based On Crank Resonators Arrays Using COMSOL Multiphysics

J. Muñoz[1], G.J. Molina [1], M.M. Rojo[1]
[1]Dpto. Electromanetismo y Electrónica, Facultad de Química, Universidad de Murcia, Campus Espinardo, Murcia, Spain

Electromagnetic metamaterials present exotic and unusual properties hardly to be found in nature with many potential applications. They are usually built by distributing small resonant structures in periodical lattices. If the structure has chiral symmetry, the medium is called chiral metamaterial. Here the electrodynamics behavior of a chiral structure with a huge electromagnetic activity at ...

Quick Search

1 - 10 of 191 First | < Previous | Next > | Last