Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Modelling of Thermally Induced Electrical Instabilities in Intestine using COMSOL Multiphysics®

A. Gizzi[1][3], C. Cherubini[1][2], S. Migliori[1][3], and S. Filippi[1][2]
[1]Nonlinear Physics and Mathematical Modeling Lab, Engineering Faculty, University Campus Bio-Medico, Roma, Italy
[2]International Center for Relativistic Astrophysics, University of Rome La Sapienza, Roma, Italy
[3]Alberto Sordi Foundation, Research Institute on Aging, Roma, Italy

Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including thermal variations, is presented here. Using COMSOL Multiphysics the existing intestinal ionic model have been ...

Stability Analysis of ALE-Methods for Advection-Diffusion Problems

A. Weddemann, and V. Thümmler
Bielefeld University, Germany

ALE-methods are frequently used to solve systems of partial differential equations (PDEs) on moving domains. The main idea of these methods is to incorporate the time evolution of the domain into the equations. However, the motion of the domain with respect to time induces convective fluxes in the resulting equations. These can lead to stability problems of the numerical method if they become ...

Effect of Gas Flow Rate and Gas Composition in Ar/CH4 Inductively Coupled Plasmas

L. Tong
Keisoku Engineering System Co. Ltd.
Japan

The discharge properties in low pressure inductively coupled Ar/CH4 plasmas operating at an RF frequency of 13.56 MHz and total gas pressure of 20 mTorr are studied in this work. The calculation of gas flow is performed in coupling with the plasma simulation. The gas flow rate is varied from 20 to 1000 sccm. The species taken into account include electrons, six kinds of molecules, eleven ...

Optimal Placement of Piezoelectric Plates to Control Multimode Vibrations of Rotating Beam

F. Botta[1], D. Dini[2], S. Gentili[1], G. Cerri[1]
[1]Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Roma Tre, Roma, Italy
[2]Department of Mechanical Engineering, Imperial College London, London, United Kingdom

Turbomachines blades are forced by a load resulting from the interaction with the fluid. The consequent vibrations, and the associated fatigue phenomena, can give catastrophic failures and the reduction of the blades life. It could be increased if damping system are used. The piezoelectric materials has received considerable attention by many researcher for their potential application in the ...

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical model of the SOFC and use of specifically designed software programs that allows the user to manipulate the ...

Radionuclide Transport Through Different Routes Near a Deposition Hole for Spent Nuclear Fuel

V-M.S. Pulkkanen[1]

[1]VTT, Technical Research Centre of Finland, Espoo, Finland

Radionuclide transport modeling is a part of the research concerning geological disposal of spent nuclear fuel. Typically, the transport models near a single deposition hole focus on the reactions of nuclides, while the model geometry and the flow of groundwater are often simplified. In this paper, instead, a radionuclide transport model in a detailed 3D geometry with no reactions is introduced. ...

Heat Drain Device on Ultrasound Imaging Probe - new

G. Vigna[1], L. Spicci[1]
[1]Esaote SPA, Florence, Italy

Self-heating is a problem to consider for Ultrasound Imaging probes. Since the probe is in contact with the skin, it’s necessary to find a solution to lower the front face temperature in order to avoid patient discomfort, even at the most demanding operating condition. One solution consists in the design of a device that drains the heat from the front to the rear of the transducer, where a ...

Study of Effect on Resonance Frequency of Piezoelectric Unimorph Cantilever for Energy Harvesting

G. R. Prakash[1], K. M. V. Swamy[1], S. Huddar[1], B. G. Sheeparamatti[1], Kirankumar B. B.[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

The focus of this paper is to study the effect on resonance frequency and power enhancement techniques[1] of piezoelectric MEMS and modeling, design, and optimization of a piezoelectric generator based on a two-layer bending element(Figure 1) using COMSOL Multiphysics. An analytical relation was developed based on the shift in resonance frequency(Figure 2) caused by the addition of a thin film ...

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

D. Song[1], R. Gupta[1], and Chhabra[2]

[1]West Virginia University, Morgantown, West Virginia, USA
[2]Indian Institute of Technology, Kanpur, India

Heat transfer from a sphere having a uniform temperature and falling axially in a cylindrical tube filled with an incompressible power-law liquid is numerically investigated. The governing equations for simultaneous flow around a confined sphere and heat transfer to power-law fluids were solved numerically using COMSOL Multiphysics. It was found that the wall effects on the mean Nusselt number ...

Flow and Mixing in the Liquid between Bubbles

B. Finlayson[1]
[1]Department of Chemical Engineering, University of Washington, Seattle, Washington, USA

Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three-dimensions. In COMSOL Multiphysics, an integration coupling variable was used by solving the problem in two dimensions ...