Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Multiscale Simulation of a Photocatalytic Reactor for Water Treatment - new

A. Cockx[1], R. Degrave[1], P. Schmitz[1]
[1]University of Toulouse, Toulouse, France

This study deals with the 3D modeling of a light photocatalytic textile. This process aims to decontaminate industrial effluents such as water with pesticides. The present study describes the implementation of a reactive transport model in a computational fluid dynamics model developed on a Representative Volume Element (RVE) of the textile, i.e. at the microscopic scale. The final ...

Numerical Evidence of Unrest-Related Electromagnetic Effects in the Campi Flegrei Caldera, Italy

G. Perillo [1], G. De Natale [2], M. G. Di Giuseppe [2], A. Troiano [2], C. Troise [2],
[1] University of Naples Parthenope, Naples, Italy
[2] INGV – Osservatorio Vesuviano, Naples, Italy

Electric, magnetic and electromagnetic (em) methods are widely used to monitor active volcanoes. A review of such applications is presented in Johnston (cit). Em signals were recorded in correspondence of numerous volcanic eruptions, for example in the case of the Mt. Unzen in Giapppone, of Merapi in Indonesia, Etna in Italy and during rapid deformation in Long Valley in California. ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...

An Application Built with the COMSOL Multiphysics® Software for Managing Computational Sequences in Thermal Fluid Applications

G. Petrone [1], C. Barbagallo [1],
[1] BE CAE & Test, Catania, Italy

An app built with the COMSOL Multiphysics® software allows both expert and beginner users to carry out parametric simulations thanks to flexible and user-friendly customized interfaces. Many people, with or without expertise in numerical analysis, can now access, exploit and share simulation tools, representing a new frontier in virtual prototyping. The investigated topic concerns an industrial ...

Modeling and Simulation of Transient SECM (Scanning ElectroChemical Microscopy) Response of Porous Electrodes

L. Balboa [1], G. Wittstock [1],
[1] Institute of Chemistry, Carl v. Ossietzky Universität Oldenburg, Oldenburg, Germany

In the past two decades, highly porous nanostructured materials have been investigated and used for a large variety of applications, such as catalysis, energy conversion/storage, optics, sensing and more. Nanoporous gold (npAu) is one of such materials which have shown great potential as an electro-catalyst due to not only its physical properties but its surface chemistry as well. It presents a ...

3D Simulation of the Electric Field of Polymeric Insulators under Adverse Conditions

D. F. Reis [1], E. J. da Silva [1], I. J. S. Lopes [1],
[1] Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

Recent studies report problems related to premature aging and degradation of high-voltage polymeric insulators. Corona activity, which is induced in areas of high electric field levels, is considered one of the leading causes of these problems. The insulator operation under adverse conditions including rain, fog, dew and pollution is affected by these key factors that modify the electric field ...

Electric Field Induced Patterning in Thin Films

A. Atta [1], S. Dwivedi [1], Vivek [1], R. Mukherjee [1],
[1] Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Interfacial structures/pattern, especially with small-scale dimensions, are important to the chemistry of materials in determining the optical, electrical, mechanical, or other physical properties of novel materials. Polymers are often used for surface patterning. The diversity, the relatively low cost, the convenient mechanical properties and the compatibility with most patterning techniques ...

Radio Frequency (RF) Thawing Irregular Shape Frozen Beef — A Computational Study

Yang Jiao [1], Yulin Li [1], Yifen Wang [1]
[1] Shanghai Ocean University, Engineering Research Center of Food Thermal-processing Technology, Shanghai, China

Imported beef often comes in halves or quarters of frozen bodies, which are irregular. Radio frequency (RF) heating can reduce processing time and minimize nutritional damage when applied in meat thawing. Because of its large penetration depth and high heating rate, RF thawing has a great potential for rapid thawing and heating uniformity improvement. The purpose of this study was to explore the ...

Design and Optimization of Power Cable Accessories Using COMSOL Multiphysics®

A. Lewarkar [1], D. Bergsma [1], S. Madhar [2],
[1] E&D Department, Lovink Enertech B.V., Terborg, Netherlands
[2] Electrical Engineering Department, Delft University of Technology, Delft, Netherlands

Power cable manufacturing is limited by the maximum length of cable that can be produced and stored on cable drums. This creates a need or rather an opportunity for a cable accessory, namely 'Cable Joints'. Joints are an impeccable component in the power cable network that necessitate extreme care in their design and installation in order to facilitate a smooth connection between two cable ends ...

Iron Ore Sintering Process Model to Study Local Permeability Control

Y. Kaymak [1], T. Hauck [1], M. Hillers [2],
[1] VDEh Betriebsforschungsinstitute GmbH, Düsseldorf, Germany
[2] Shuangliang Clyde Bergemann GmbH, Ratingen, Germany

The iron ore sintering process prepares fine iron ore for the blast furnace process. A mixture consisting of iron ore, coke (fuel) and additives is ignited at the top and air is sucked from below to move a combustion front down through the bed. Most of the sintering plants use permeability bars to raise the productivity. The permeability bars locally aerate the bed of raw materials after ...