Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Quench Propagation in 1-D and 2-D Models of High Current Superconductors

G. Volpini[1]
[1]LASA Lab., Milan Dept., Istituto Nazionale di Fisica Nucleare, Milano, Italy

The understanding of quench, or the sudden transition to the normal state of a high-current Superconductor (SC), is fundamental for the design of a SC magnet, and it is widely discussed in the literature. This paper presents some simple COMSOL models, which are compared with well-known approximate formulae and some experimental results. These models allow a more precise description than it is ...

Bio-Effluents Tracing in Ventilated Aircraft Cabins

G. Petrone[1], L. Cammarata[1], and G. Cammarata[1]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Ventilation and Indoor Air Quality (IAQ) are issues of very high interest, determining comfortable conditions for occupants and no-contaminated local atmosphere. The aircraft cabins are more confined and have a higher occupant density than other indoor environments such as offices or residential houses. The passengers and the crew share a closed and ventilated cabin, which brings potential risk ...

Cascades of Secondary Particles in High Voltage Accelerators

M. Cavenago[1], P. Antonini[1][3], P. Veltri[2], N. Pilan[2], V. Antoni[2], and G. Serianni[2]
[1]INFN-LNL, Legnaro, Padova, Italy
[2]Consorzio RFX, Padova, Italy
[3]Centro Ric. E. Fermi, Roma, Italy

A very simplified system for high voltage test is studied, considering reason for voltage holding failures which are not covered by conventional and local design criteria. A first understanding of the problem is obtained by solving the electrostatic potential in a 2D axis symmetric geometry, considering in detail the electrode shapes, and following a cascade of particle between opposite ...

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

Effect of Interfacial Charge on the Drop Deformation under the Application of Oscillatory Electric Field.

R. Patil[1], and V. A. Juvekar[1]
[1] Department of Chemical Engineering, Indian Institute of Technology Bombay, Maharashtra

Study of interaction of drops and bubbles with electric field is important for understanding the physics involved in various physical phenomenas and industrial processes. Important applications arise in colloidal systems (Miller and Scriven, 1970), meteorology and cloud physics (Sartor, 1969), electrostatic spraying of liquids (Balachandran and Bailey, 1981), power engineering applications ...

Thermal Analysis of Intermediate Heat Exchanger in a Pool Type Fast Breeder Reactor

S. Agarwal[1], C. A. Babu[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]


[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam

 Intermediate heat exchanger (IHX) in a pool-type liquid metal cooled fast breeder reactor is an important heat exchanging component as it transfer heat from the radioactive primary sodium in the pool to the non-radioactive secondary sodium. The secondary sodium ultimately heats up water in a steam Generator (SG) to produce the steam for power generation. Intermediate heat exchanger is a ...

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Inverse Estimation of the Flow Resistivity Tensor of Open-Cell Foams from Experimental Data and Darcy’s Flow Simulations

C. Van der Kelen, P. Göransson, and N-E.Hörlin
Marcus Wallenberg Laboratory for sound and vibration research, KTH Aeronautical and Vehicle Engineering, Stockholm, Sweden

The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of open cell foams, used in acoustic treatments. Due to the manufacturing processes, these foams are most often geometrically anisotropic. This paper discusses the estimation of the flow resistivity tensor using an improvement of a ...

Multiphysics Simulation of REMS hot-film Anemometer Under Typical Martian Atmosphere Conditions

L. Kowalski, L.C. Muñoz, M.D. Pumar, and V.J. Serres
Universidad Politécnica de Cataluña, Departamento de Ingeniería Electrónica, Barcelona, Spain

The purpose of this paper is to describe numerical electro-thermal simulations of the REMS wind sensor unit and the results obtained by using COMSOL Multiphysics. This device is a hot-film anemometer for 2D wind measurements, which does not have movable parts and is based on the air stream forced heat convection to the environment. This wind sensor works as a thermo-electrical transducer where ...

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program architecture is explained and is used to simulate two applications. The first calculates the voltage induced by an ...