Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing ...

Heat Generation from H₂/D₂ Pressurization of Nanoparticles: Simulation of the Experiments on COMSOL Multiphysics®

A. Osouf[1], G. Miley[2], B. Stunkard[3], T. Patel[3], E. Ziehm[2], K. Kyu-Jung[3], A. Krishnamurthy[1]
[1]Department of Aerospace Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[2]Department of Nuclear, Plasma & Radiological Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[3]University of Illinois at Urbana - Champaign, Urbana, IL, USA

A COMSOL Multiphysics® model of our apparatus has been created in order to simulate the pressurizations of our nanoparticles by Deuterium. Using reference measurements during a cooling process, we calibrated the model so that its thermal aspects reflect the ones of our experimental set up. To reproduce the pressurizations, the following variables are parameters : the location of the heat ...

Particle Focusing Optimization and Stress Analysis of a Magnetic Horn

S. di Luise[1], A. Rubbia[2]
[1]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland and CERN European Organization for Nuclear Research, Geneva, Switzerland
[2]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland

A neutrino oscillation experiment aims to the observation of the transformation of a neutrino of a given flavour into a neutrino of a different flavour. A beam of neutrinos is produced through the decay of charged pions which in turn are produced in the collision of high energy accelerated protons impinging on a thick target. A series of magnetic horns is used to focus charged particles produced ...

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

Hiroyuki ISHIMORI et al.[1]

[1]Ritsumeikan University, Kyoto, Kyoto, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Optimization of Active Packaging for Microwaveable Food Products Using COMSOL Multiphysics® - new

S. Landa[1], A. Bardenstein[1]
[1]Danish Technological Institute, Taastrup, Denmark

Upon operation, the magnetron of a conventional microwave oven induces a pattern of standing electromagnetic waves in the oven cavity. Interactions with the field define the amount of energy absorbed in a part of a food object within the cavity. The well-known inhomogeneous heating produced in a microwave oven is partially an effect of the standing waves’ natural nodes and antinodes and ...

Multiphysics Modeling of Electrode-Driven Renal Denervation for Hypertension Treatment - new

M. Miliani[1], F. Piccagli[1], C. Silvestro[1]
[1]Medtronic Invatec S.p.A., Roncadelle, Italy

Introduction: Chronic arterial hypertension (HTN) is a pathological condition characterized by prolonged high level of arterial blood pressure causing major damages to several human body apparata. Renal sympathetic denervation (RDN) has been found to effectively reduce systemic blood pressure. Metallic electrodes can be placed on an endovascular device connected to external radio frequency (RF) ...

Simulation of Air Flow Through Ventilation Ducts - new

E. Dalsryd[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

In this report I study the airflow through ventilation ducts. By numerical simulation, the so-called k-factor has been estimated. The k-factor is the quotient of the airflow volume and the square root of the pressure drop over the duct. A two dimensional axial symmetric model has been used to simulate an iris damper connected to a straight pipe. A three dimensional model has been used to ...

Eigen and Coupled Modes on Nanoparticle Aggregate Arrays - new

M. Csete[1], A. Szalai[1], E. Csapó[2], A. Somogyi[1], I. Dékány[2]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2]MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Szeged, Hungary

Novel class of artificial optical antennas are of great interest in biosensing applications of nanoplasmonics due to their unique and tunable spectral properties. Silver colloid spheres covered with L-cysteine were studied experimentally by spectroscopy and TEM and numerically by a COMSOL Multiphysics® simulation. Experimental studies revealed that the Ag NP-Cys core-shell conjugates prefer to ...

Inverse Method for Calculating the Temperature-Dependent Thermal Conductivity of Nuclear Materials - new

T. Pavlov[1,2], P. Van Uffelen[1], L. Vlahovic[1], D. Staicu[1], M. Wenman[2], R. W. Grimes[2], ,
[1]Institute for Transuranium Elements, Eggenstein-Leopoldshafen, Germany
[2]Department of Materials, Imperial College London, London, UK

The high temperature measurement of thermal conductivity is vital for predicting nuclear fuel performance both during reactor operation and accident conditions. The proposed method uses experimental thermograms obtained via high temperature laser-flash heating of a disc-shaped sample in combination with finite element analysis and parameter optimization to calculate the thermal conductivity ...


刘佳琪 [1], 朴胜春 [2], 唐骏 [2]
[1] 哈尔滨工程大学,哈尔滨,黑龙江,中国
[2] 挪威科技大学,特隆赫姆,挪威

海洋覆盖了地球表面百分之七十以上的面积,其中蕴藏着丰富的生物矿产资源,日益受到世界各国的重视。声波作为海水中传输信号的唯一载体,在浅海波导中的传播受海底和海面影响很大,当声波在浅海波导中发生折射反射和散射时,如何预报复杂海底边界条件下浅海中的传播特性对海洋开发有重要意义。针对含有声速剖面的沉积层海底、楔形海底及实际弹性海底,利用有限元理论,对二维浅海声场的传播损失进行数值模拟。应用 COMSOL Multiphysics® 软件的声压接口和声结构耦合接口,把地形数据导入软件模拟真实海底的地形。把浅海波导简化成分层矩形,信号源以点声源的形式向外发射单频信号,在模型定义处添加完美匹配层模拟无限远距离处声压场情况;对于含有声速剖面情况的波导问题,在 COMSOL 中可以较为便捷地以添加内插函数的形式进行仿真,与其他声场建模软件形成对比,突显有限理论元理论计算浅海传播损失的优势 ...

3161 - 3170 of 3379 First | < Previous | Next > | Last