Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design of Microfluidic Device for Cellular Experiment Under Controlled Oxygen Tension

K. Funamoto[1], I.K. Zervantonakis[2], R.D. Kamm[2]
[1]Tohoku University, Sendai City, Miyagi, Japan
[2]Massachusetts Institute of Technology

Numerical simulation of oxygen tension was performed to develop a microfluidic device for three-dimensional real-time observation of cellular response under hypoxia. The optimal experimental condition was obtained through investigations of effects of parameters, such as device thickness and flow rates of media and gas, on oxygen tension.

Numerical Modeling of Power Reactors' Fuel Bundles

R. Schmidt[1], T. Yousefi[2], B. Farahbaksh[2], M. Z. Saghir[2]
[1]University of Louisiana at Lafayette, Lafayette, LA, USA
[2]Ryerson University, Toronto, ON, Canada

Fuel bundles in the CANDU (CANada Deuterium Uranium) reactor are designed for heating a pressurized coolant (heavy water) to generate electricity. The designs for the fuel bundles differ based on the number of heating elements. The flow of heavy water over the elements and inside the shell is highly turbulent. In this paper, COMSOL Multiphysics® is used to simulate the heavy water flow ...

Joule Heating in Electroosmotically Driven Circular Constriction Microchannel

U. Sanjay [1], P. Sarith[2], R. Ajith Kumar[1]
[1]Amrita Vishwa Vidhyapeetham, Kollam, Kerala, India.
[2]National institute of Technology, Calicut, Kerala, India.

Liquid transport in lab-on-a-chip (LOC) devices occurs through a microchannel that uses an electroosmotic flow actuation mechanism. This method has a plug-like velocity profile, which is ideal in species transport and in wall-bounded reactions. Under substantial joule heating, it is not possible to maintain a plug-like velocity distribution. My work investigates the effects of joule heating ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...

Optimization of 3D Layered Metal-Dielectric Stacks (MDS) for Near-Field Fluorescence Imaging

P.S. Tan[1], K. Elsayad[2], K. Heinze[1]
[1]Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
[2]Research Institute of Molecular Pathology (IMP), Vienna, Austria

Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and surface roughness that are detrimental to image reconstruction. As such, we propose an optimized planar anisotropic ...

Towards Optimized Neural Stimulation in a Device for Urinary Incontinence

A.N. Shiraz[1], A. Demosthenous[1]
[1]E&EE Department, University College London, London, United Kingdom

After spinal cord injury (SCI) the functions of the lower urinary tract are often disrupted and may have fatal consequences for the patient. It has been shown that using a transrectal probe developed by Craggs et al., through conditional transrectal stimulation of pudendal nerve, it is possible to treat hyperreflexia in some of the SCI patients. To maximise the efficacy of this type of ...

Interaction between Light Wave and Asymmetric Metal/Insulator/Metal (MM) Structure Coupled with Subwavelength Holes at Optical Fiber Apex

Yasushi OSHIKANE[1]

[1]Osaka University, Suita, Osaka, Japan

Electromagnetic simulation of light wave interaction at around a tip of single mode optical fiber, which is formed of circular truncated cone shape, has been studied numerically by COMSOL Multiphysics and the RF Module (and Wave Optics Module). The fiber tip has specific nanostructure of asymmetric metal/insulator/metal (MIM) layers coupled with subwavelength holes. Behavior of surface plasmon ...

Simulation of Helmholtz Resonators for Optical Gas Sensing: Comparison Between Pressure Acoustics and Thermoacoustics - new

B. Parvitte[1], C. Risser[1], R. Vallon[1], V. Zéninari[1]
[1]Université de Reims, Reims, France

Among optical gas sensing methods, photoacoustic (PA) spectroscopy combined with a laser source has proven to be a very robust and sensitive method for trace gas detection. COMSOL Multiphysics® software was used to calculate the frequency response of differential Helmholtz resonator cells in order to optimize the detection limit of PA sensors. Two different kind of simulation were performed: ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...


宋春芳 [1], 王燕 [1], 金光远 [1], 崔政伟 [1],
[1] 江南大学,无锡,江苏,中国

方便餐盒微波加热特性研究 宋春芳※ 王燕 金光远 崔政伟   (江苏省食品先进制造装备技术重点实验室,江南大学机械工程学院,江苏,无锡,214122) 摘要:本文采用 COMSOL Multiphysics® 建立了电磁与传热耦合的仿真模型,研究方便餐盒微波加热传热特性规律,模型包括加热腔、波导以及可旋转的转盘和物料,通过比较不同转速对仿真结果的影响,选用 7.5rpm 作为转盘转速。研究结果表明,微波功率为 700W,90s 的微波加热后,方便餐盒空间温度场分布和瞬态温度曲线与实验结果基本保持一致,微波仿真模型可行,研究结果为方便餐盒的微波快速加热及工业化生产与加工提供一定的理论依据。 关键词:微波;仿真;转盘;传热;转速