Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design of Passive Micromixers using the COMSOL Multiphysics software package

M. Itomlenskis, P. Fodor, and M. Kaufman

Physics Department, Cleveland State University, Cleveland, OH, USA

Relief patterning of the surface of microchannels has been actively pursued as a method of promoting mixing in systems with a low Reynold’s number (<<100). In this work, we explore, by using the COMSOL Multiphysics package and its Chemical Engineering Module, the possibility of enhancing the mixing quality of two fluids in a microchannel with a non-periodic fractal pattern of ridges ...

Numerical Simulation of Granular Solids’ Rheology: Comparison with Experimental Results

A. Zugliano[1], R. Artoni[2], A. Santomaso[2], A. Primavera[1], M. Pavlicevic[1]
[1]Danieli & C. Officine Meccaniche, Italy
[2]DIPIC - Universita di Padova, Italy

A simulation of the behavior of bulk solids continuously flowing through a silo with internal flow feeders has been performed by means of a dissipative hydrodynamic model. The results obtained by these calculations and those found experimentally agree, not only with regard to the velocity profiles, but also relative to the pressure on the silo walls. The dissipative hydrodynamic model represents ...

Sound Attenuation by Hearing Aid Earmold Tubing

M. Herring Jensen
Widex A/S, Vaerloese, Denmark

In this study we model the sound attenuation properties of a hearing aid earmold tube. The model includes thermoviscous acoustic effects and it couples structural vibrations to the external acoustic field. Moreover, the finite element domain is coupled at two boundaries with an electroacoustic model of a hearing aid and an acoustic 2-cc coupler.

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the magnetic force delivered by a current and properly arranging the electrostatic geometry allows to obtain very ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

The Application of micro-and nano-electromechanics on Biomedicine by COMSOL Multiphysics

J-S. Chang
National Taiwan University, Taipei, Taiwan

Prof. Jeng-Shian Chang received his B.Ec. degree (1974) in Mechanical Engineering from National Taiwan University, Taipei, Taiwan, and M.Sc. degree (1981) in Mechanical Engineering and M.Sc. degree (1983) in Computer Science both from Syracuse University, USA. In 1984 he received the Ph.D. degree in Mechanica Engineering from Syracuse University, USA. In 1984, he joined the Institute of Applied ...

Reliability Testing for the Next Generation of Microelectronic Devices

J. Plawsky, W. Gill, M. Riley, J. Borja, and B. Williams
Rensselaer Polytechnic Institute, Troy, NY, USA

Understanding and predicting the reliability of new generations of high and low-k dielectrics is increasingly important for gate oxides and interlayer dielectrics as both films have become thinner and scaling of device operating voltages has not kept pace with the decrease in the size of the dielectrics. We have developed a series of COMSOL-based mass transfer-based models that have proven to ...

Wavebased Micromotor for Plane Motions (3-DoF)

G. Jehle, D. Kern, and W. Seemann
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

This paper proposes the design of a 3-Degree of Freedom(DoF) motor based on surface acoustic waves in elastic solids. The rotor is propelled by wave fields, for linear and rotational motion respectively, in the stator, that can be steered by the driving signal of the piezoelectric actuators, which are placed on an elastic plate. The next considerations concern the feasibility of the proposed ...

Optimal Design of Slit Resonators for Acoustic Normal Mode Control in Rectangular Rooms

S. Floody[1], R. Venegas[2], and F. Leighton[3]
[1]Universidad de Chile, Facultad de Artes, Departamento de Música y Sonología, Licenciatura en Sonido, Santiago, Chile
[2]University of Salford, Acoustics Research Centre, Salford, UK
[3]Universidad Tecnológica de Chile Inacap, Sede Pérez Rosales, Santiago, Chile

The present article presents a method to redistribute the acoustic modes of a rectangular enclosure in the low frequency range using slit resonators. The objective of the present work is to compare different strategies of optimal design in order to determine the dimensions of the resonators. The method of the finite elements will be used to model the acoustic physical behavior of the room. In ...