Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Resonant Frequency Analysis of Quartz Shear Oscillator

T. Satyanarayana[1], V. Sai Pavan Rajesh[2]
[1]NPMASS Centre, Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India
[2]Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India

The most commonly used type of resonator is the AT-cut, where the quartz blank is in the form of a thin plate cut at an angle to the optic axis of the crystal. This paper reports the modeling of a quartz oscillator for a resonant frequency analysis based on piezoelectric effects. The proposed oscillator consists of a single quartz disc with two electrodes on the top and bottom surfaces of the ...

Design and Analysis of Multilayered MEMS Microphone Using COMSOL Multiphysics®

Saranya srinivasa raghavgan[1], Sowmya Srinivasa raghavan[1], Shruti Venkatesh[1]
[1]Rajalakshmi Engineering College, Chennai, India

In this project, we report a design of MEMS microphone that is based on the application of porous silicon in improving the sensitivity of bulk micro machined capacitive pressure sensors. The property of a low Young’s modulus of porous silicon and its dependence on porosity have been exploited to obtain a higher sensitivity compared to pressure sensors with single crystalline silicon membranes. ...

Numerical Simulation for Landfill Stabilization Process considering Degradation of Organic Chemical Compounds in Waste

Hiroyuki ISHIMORI[1]
[1]Ritsumeikan University, Kyoto, Kyoto, Japan

This presentation describes the numerical simulation model where gas/liquid two-phase porous media flow equations are coupled to multicomponent gas-phase transport and water-phase transport equations in COMSOL Multiphysics. This is done in order to predict the landfill stabilization process considering degradation of organic chemical compounds in waste.

Improvement of the Reflective Characteristic of the Microwave Ion Source Chamber with COMSOL®

[1]Hirohiko MURATA

Sumitomo Heavy Industries, Ltd., Shinagawa, Tokyo, Japan[1]

We, Sumitomo Heavy Industries, Ltd. have been developing a microwave ion source since 2011. The design of the chamber is important to generate plasma efficiently. The plasma chamber was designed with the COMSOL Multiphysics RF module, and reported the results at this conference last year. In order to improve the reflective characteristic further, we redesigned the plasma chamber with the RF ...

Multiphysics Model for Breakup of Charged Liquid Droplets in Electric Fields

S. Chaudhuri [1], W. Du [1],
[1] University of Illinois at Urbana-Champaign, Champaign, IL, USA

Predicting and controlling the formation of droplets from a liquid jet is a critical problem in a variety of applications ranging from fuel injection to paint sprays. It is known that liquid droplets subjected to an electric field acquire a net electrostatic charge via induction, and that the magnitude of this charge depends on the conductivity of the liquid and the size of the droplet [1]. When ...

Marine Vibrator Bubble Source Simulation and Testing

A. K. Morozov [1],
[1] Teledyne Marine Systems, North Falmouth, MA, USA

Marine Vibrators are a coherent type of sound source, which can be quieter and less harmful for marine habitants than traditional air-gun technology. Such source gives clearer, more precise and higher resolution imaging of the bottom properties due to the coherent signal and streamer array processing. Teledyne Marine Systems is developing a coherent seismic marine sound source technology ...

Highly Optimised Double Gimbal-Based Accelerometers with Piezoelectric Sensing Mechanism

K. Govardhan [1], T. Pedanekar [1], P. Vashishtha [1],
[1] VIT University, Vellore, Tamil Nadu, India

A comparative study is done using optimized single axis accelerometer and dual axis and double gimbal accelerometers are designed with different cantilever beam types i.e. perforated, non perforated, spring type and cross spring type. The models are simulated to find the most sensitive model.

基于 COMSOL 的 Ion-Filter ICP 腔室仿真

韩传锟 [1], 程嘉 [2], 路益嘉 [2], 杨义勇 [1]
[1] 中国地质大学(北京),北京,中国
[2] 清华大学,北京,中国

为抑制离子轰击靶材,提高亚稳态原子密度而提出了离子筛选 ICP(I-F ICP)设备,可以有效地抑制带电粒子到达靶材表面,亚稳态原子与电子/离子数量比值明显提高,有助于 CVD 工艺中靶材表面的活化。本文通过 COMSOL Multiphysics® 中耦合等离子体和流场接口对 I-F ICP 腔室建模仿真,腔室结构见图1,应用氩气放电仿真研究了离子筛网的过滤效果。首先对比有无耦合流场的结果,结果显示了耦合流场仿真的必要性。用等离子体场与流场耦合计算,等离子体场为流场提供流体的特性参数密度和动力学粘度系数,流场接口为等离子体接口提供速度场和决定压力等参数并提供进、出气口,详细的计算流程见图2。仿真结果显示离子筛网能够改变等离子体放电参数(电子/亚稳态原子数密度、电子温度、电子电势等)的分布,有效地阻止带电粒子到达靶材表面,增加靶材表面发生反应的亚稳态原子比重;其次 ...

微波干燥电磁场、多相传输及大变形三维耦合模型

张春 [1], 朱铧丞 [1], Ashim Datta [1],
[1] 四川大学,成都,四川,中国

引言:微波干燥过程涉及多物理场的耦合,物理过程十分复杂。不仅有被加热物质的形态改变,还有气态、液态和固态三相的相互作用。为了更清楚地理解微波干燥过程,本模型将电磁场、多相流和物理变形用相应的方程耦合到一起建模分析,并用相应的物理参数表征微波干燥过程。(图1) COMSOL Multiphysics® 的使用:借鉴微波加热接口土豆模型,添加气体和固体传热接口以及自定义方程,用方程和参数实现多物理场耦合。实验模型中,干燥物为土豆,且被视为多孔弹性介质。物质变形用相应的矩阵来表征。 结果:在仿真结果的基础上,利用家用微波炉干燥土豆,设计实验,并测量了微波干燥过程中的重要物理参数,如温度、水分和形变。(图2,图3) 结论:该仿真模型和实验基本吻合 ...

Simulation Study in Design of Miniaturized MID-Infrared Sensors

B. Mizaikoff, X. Wang, and S.-S. Kim
Institut für Analytische und Bioanalytische Chemie
Universität Ulm
Ulm, Deutschland

Evanescent-wave optical waveguide is widely used as sensing platform for chemical/biological sensor applications. Our research group contributed to on-chip IR sensor technology and made recent progress in miniaturizing such devices utilizing quantum cascade lasers (QCL) in combination with planar GaAs/Al0.2Ga0.8As waveguides. Furthermore progress is reported toward microfabricated Mid-infrared ...

2691 - 2700 of 3379 First | < Previous | Next > | Last