Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Finite element simulation for electronics

Y. Mizuyama
Panasonic Boston Laboratory, Newton, MA, USA

Dr. Yosuke Mizuyama is a Lead Engineer at Panasonic Boston Laboratory. He has been working on various electronics for Panasonic Corporation in Japan for many years. His research includes incandescent/fluorescent lamp, electrostatic/pzt inkjet, MEMS and BD/DVD/CD optical drive. His current interest is electromagnetic simulation for laser and optics. He has been engaged in numerical analysis using ...

Variable Capacitance And Pull-In Voltage Analysis Of Electrically Actuated Meander-Suspended Superconducting MEMS

N. AlCheikh[1], P. Xavier[1], J.M. Duchamp[1], C.H. Boucher[2], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Minatec, Grenoble, France
[2]Institute of Millimetric Radio Astronomy (IRAM), Grenoble, France

Variable capacitors between the fF and pF range are very interesting for high frequency applications like variable filters, resonators, etc. For radio astronomy applications variable capacitors, realized by electrostatically actuated, micromechanical Meanders-suspended bridges (MEMS) made of superconducting Niobium, have been measured to find C(V). A non plane capacitance behavior have been ...

Thermal FEM Simulation Of A Multilevel Lab On Chip Device For Genetic Analysis

E. Giuri, A. Ricci, and S.L. Marasso
Politecnico di Torino, Materials Science and Chemical Engineering Department, Turin, Italy

In this work, time dependent thermal analyses, performed on the 3D FE model of a multilevel Lab on Chip (LOC) platform are executed in order to gain insight into the temperature distribution within the device. By means of the COMSOL Multiphysics CAD import module, an extremely close 3D reproduction of the actual device, allowing to probe temperatures in those regions where an experimental ...

Long Term Performance Of Borehole Heat Exchanger Fields With Groundwater Movement

S. Lazzari, A. Priarone, and E. Zanchini
DIENCA, University of Bologna, Bologna, Italy

A numerical investigation of the long-term performance of double U-tube borehole heat exchanger (BHE) fields, in the case of non-negligible effects of groundwater movement, is performed by means of COMSOL Multiphysics. Two time periodic heat loads, with a period of one year, are studied: Q1, with a partial compensation between winter heating (principal load) and summer cooling; Q2, with no ...

Numerical Modelling Of Sound Absorptive Properties Of Double-Porosity Granular Materials

R. Venegas, and O. Umnova
Acoustics Research Centre, University of Salford, Salford, United Kingdom

Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating characteristics. An emerging field is the study of acoustical properties of multi-scale porous materials. An example of these is a double-porosity granular material in which the grains are porous themselves. In this work, a computational methodology for modelling this type ...

Propagation Of Tsunamis Over Large Areas Using COMSOL

C. Cecioni, and G. Bellotti
University of Roma TRE, DSIC, Rome, Italy

This paper presents a numerical model based on the mild-slope equation (MSE for short) solved using the PDE mode of the software COMSOL Multiphysics suitable to reproduce the propagation of small amplitude tsunamis in the off-shore field. The model solves the governing equations in the frequency domain and allows the reproduction of the frequency dispersion for broad banded spectrum sea states. ...

Integrated Model For Ocean Waves Propagating Over Marine Structures On A Porous Seabed

D-S. Jeng, X. Luo, and J. Zhang
Division of Civil Engineering, University of Dundee, Dundee, Scotland, UK

In this paper, an integrated model for ocean waves propagating over a submerged coastal structure, based on COMSOL Multiphysics, is presented. In the model, Navier-Stoke Equation is solved for the wave propagation and Biot’s poro-elastic model is solved for the porous seabed. The new feature of this model is to integrate both wave and soil models into one model. This can be achieved within ...

Coupling of Wired PCB With Microwave Radiation – 3D Simulation and Experimental Valuation

T. D. Bui[1], F. Bremerkamp[2], and M. Nowottnick[2]
[1]Department of Automobile Engineering, Thanh Do University, Ha Noi, Vietnam
[2]Institute of Electronic Appliances and Circuits, Department “Reliability and Safety of Electronic Systems”, University of Rostock, Rostock, Germany

Modern electronic assemblies and printed circuit boards (PCB) with their sensitive structures and elements have to be protected against environmental influences by conformal coating or casting compounds. In this case the main challenge is the simultaneous curing of the polymers and the safekeeping of the electronic elements and structures on the PCB. This implies the investigation of the heating ...

Design of Electrochemical Machining Processes by Multiphysics Simulation

M. Hackert-Oschätzchen, S. F. Jahn, and A. Schubert
Chemnitz University of Technology
Chemnitz, Germany

The principle of electrochemical machining (ECM) is the anodic dissolution of a metallic workpiece at the interface to a liquid ionic conductor under the influence of electric charge transport. This erosion principle works independently from the mechanical hardness of the workpiece and is free of mechanical forces. The design of electrochemical machining processes is still performed ...

Electro-acoustic Coupling in Nematic Liquid Crystals

G. Rosi[1], L. Teresi[1], A. DiCarlo[1], and F. dell'Isola[2]
[1]LaMS - Università degli Studi Roma Tre, Roma, Italy
[2]Università degli Studi di Roma "La Sapienza", Roma, Italy

Liquid crystals - as all liquids - are generally modelled as incompressible media. In fact, mass-density changes occurring in these mesophases are minuscule and inconsequential in most regimes of interest. However, liquid crystals exhibit also phenomena that call for a more refined theory. In particular, it is experimentally well established that the Fréedericksz transition - i.e., the sudden ...

2691 - 2700 of 3390 First | < Previous | Next > | Last