Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Linear LS Parameter Estimation of Nonlinear Distribute Finite Element Models

E. Sparacino[1], D. Madeo[1], and C. Mocenni[1]

[1]Dipartimento di Ingegneria dell’Informazione, Università di Siena, Siena, Italy

This work concerns the development of a new direct parameter identification procedure for a class of nonlinear reaction- diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity or reaction term parameters. Using the Finite Element Method we are able to transform the original partial differential equation into a set of ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Modeling the Internal Pressure Distribution of a Fuel Cell

P.A. Koski[1] and M.S. Mikkola[1]
[1]Department of Applied Physics, Helsinki University of Technology, Espoo, Finland

A 3D FEM (Finite Element Method) model for predicting the internal pressure distribution of a fuel cell stack is presented. The model includes contact pair boundary conditions between the most critical components, thermal expansion and Young's moduli as a function of temperature. The model is used to investigate the changes in pressure distribution inside a PEM fuel cell at realistic ...

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Phasefield Modeling of Ferroelectric Materials

Marc Kamlah
Head of the Mechanics of Materials Department, Forschungszentrum Karlsruhe, Germany

Outline of presentation: theory of phase-field modeling of ferroelectric materials parameter identification in free energy density finite element implementation: PDE form weak form periodic boundary conditions: electrical mechanical domain configurations intrinsic and extrinsic contributions to small signal properties ---------------------------------- Keynote speaker's biography ...

Modelling of Micro/Macro Densification Phenomena of Cu Powder during Capacitor Discharge Sintering

G. Maizza[1] and A. Tassinari[1]

[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Capacitor Discharge Sintering (CDS) is an ultrafast Electric Current Assisted Sintering method (u-ECAS) suited for electrically conductive powders. It is characterized by relatively short processing times (milliseconds range) and much lower sintering temperatures than the melting point of the powders. However, the CDS basic phenomena are not fully understood yet neither at the macroscale nor at ...

Underground Coal Fire Extinction Model Using Coupled Reactive Heat and Mass Transfer Model in Porous Media

S. Suhendra[1], M. Schmidt[1], and U. Krause[1]
[1]Laboratory II.2: “Flammable Bulk Materials and Dusts, Solid Fuels”, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Green house gases emission associated with natural hazard of underground coal seam fire has been recognized as a worldwide problem leading to global warming threat. Therefore, in this paper a model to study underground coal fire is presented and the results will be devoted to strategic development of coal fire extinction technology within the framework of Sino-German Coal Fire Research ...

Magneto-structural Analysis of Fusion grade Superconducting Toroidal Field Coils

A. Amardas [1], and S. Dwivedi[2]
[1] Institute for Plasma Research, Gandhinagar, Gujarat, India
[2] COMSOL Multiphysics Pvt. Ltd, Bangalore, Karnataka , India

In this paper, detail magnetostructural analysis of fusion grade superconducting toroidal field coils that are used in ‘tokamaks’ is presented. The stresses that arise due to Lorentz forces in large size superconducting coils that carry high currents are of catastrophic type in nature. These stresses are expected to influence the integrated performance of the magnet system. In this ...

Sensitivity Estimation of Permanent Magnet Flowmeter

V. Sharma[1], S. K. Dash[1], G. Vijaykumar[1], B. K. Nashine[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

Permanent Magnet Flowmeter (PMFM) is a non invasive device, which is used to measure the flow of electricallyconducting sodium in Fast Breeder Reactor Circuits. PMFM works on the principle of generation of motional EMF by magnetic forces exerted on the charges in a moving conductor. In this paper modeling of PMFM with different pipe sizes is done to predict the flowmeter output for a given ...

Electro-Thermal Analysis of a Contactor: Comparing the Performance of Two Braze Alloys during the Temperature Rise Test

E. Gutierrez-Miravete[1], and G. Contreras[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Electric Co., Plainville, CT, USA

The purpose of this study was to develop mathematical models of the coupled electro-thermal process in selected, typical contactors that could then be validated and verified by comparing model predictions with the results of previous studies and with experimental data obtained during a temperature rise test. The study employed Finite Element Analysis using COMSOL to simulate coupled electro ...