See How Multiphysics Simulation Is Used in Research and Development


Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
View the COMSOL Conference 2018 Collection

Predicting the Parasitic Forces in the Magnetically Levitated Adaptive Optics Mirrors

C. Del Vecchio [1], R. Briguglio [1], A. Riccardi [1], M. Xompero [1],
[1] National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

In an Adaptive Optics system, the magnetic coupling of the Deformable Mirror with the Reference Frame may generate undesired forces and torques when any mechanical misalignment occurs. Moreover, the concave or convex shape of the thin, adaptive mirror shell undergoes similar permanent ... Saiba Mais

Modeling of Epithelial Sheet Deformation Under External Force Applied by a Migrating Cell

M. A. Akhmanova [1], A. Ratheesh [1], D. E. Siekhaus [1],
[1] Institute of Science and Technology Austria, Klosterneuburg, Austria

Mechanics of living cells and tissues play a central role in many phenomena, from tissue shape formation (morphogenesis) to migration of cells within tissues. One prominent example is the epithelia – a sheet of cells tightly attached to one another. It provides a physical barrier to ... Saiba Mais

Multiphysics Simulations for the Design of a Superconducting Magnet for Proton Therapy

C. Calzolaio [1], H. Carolin [1], S. Stephane [1],
[1] Paul Scherrer Institut, Villigen, Switzerland

The use of proton therapy for cancer treatment shows a growing trend, since the radiation dose delivered to the target volume is maximized and the dose to the surrounding healthy tissues is minimized. To direct the proton beam from all directions to the tumor in the patient, the last ... Saiba Mais

On the Modeling and Simulation of Electroosmotic Micropump for Biomedical Applications

M. Badran [1],
[1] Future University in Egypt, Cairo, Egypt

Non-mechanical micropumps, which does not required moving parts, have prominent role in several biomedical microsystems such as drug delivery, and lab on a chip. Electroosmotic micropump is a non-mechanical micropump that is used to move electrically neutral fluids through very small ... Saiba Mais

石墨烯包裹海绵处理水面原油泄露问题

王永超 [1], 葛进 [1],
[1] 中国科学技术大学

海上石油泄漏不仅造成资源的浪费,还长期威胁着脆弱的生态系统。然而浮油具有面积大、油层薄、粘度大的特点,难以采用传统的技术和材料来有效地处理。作者利用石墨烯海绵疏水亲油、导电的特点,设计了一种原位加热的方法,有效地较低了原油的粘度,增大了油在海棉里的扩散系数,在解决快速吸附高粘度原油这一世界性难题方面取得了突破性进展。 在这个研究工作中,作者发现很难在实验上获得此方法的能量消耗情况,为了回答这个问题,作者应用 COMSOL® 软件,模拟了石墨烯海绵加热吸油的热传导过程。运用电流模块,模拟石墨烯泡沫通电加热升温的过程,用热传导模块模拟热量通过石墨烯泡沫传递到油、水 ... Saiba Mais

超声辅助水下湿法焊接气泡生长规律研究

滕俊博 [1], 孙清洁 [1], 王建峰 [1],
[1] 哈尔滨工业大学(威海)

文章从数值模拟的角度研究了超声辅助水下湿法焊接中超声对自保护药芯焊丝产生的气泡的影响。在水下湿法药芯焊丝电弧焊接(FCAW)中,通过药芯燃烧产生的气泡来保护电弧和熔池,电弧的稳定性因此得到提高。采用了 COMSOL 两相流水平集的方法来模拟气泡,采用压力声学来模拟变幅杆振动产生的声波。在变幅杆模拟中,通过在辐射端端面上添加法向加速度,在变幅杆的表面和工件表面添加硬声场条件来形成驻波,通过改变变幅杆端面与工件上表面的距离,计算声辐射功率,从而得到超声谐振高度。在两相流中,首先模拟无超声时气泡的自由上浮过程,再通过在层流中添加体积力即声辐射力来实现声场与流场的耦合 ... Saiba Mais

Comprehensive Numerical Modeling of Filamentary RRAM Device

D. Niraula [1], V. Karpov [1],
[1] University of Toledo, Toledo, OH, USA

Resistive random-access memory (RRAM) is a non-volatile memory that operates via resistive switching between the insulating (OFF) and conducting (ON) states, representing the logical ‘0’ and ‘1’ binary states, in response to external bias. Attributes such as high memory density, fast ... Saiba Mais

Modelling of Lintel-Masonry Interaction Using COMSOL

A. Vermeltfoort, and A. van Schijndel
Eindhoven University of Technology, Netherlands

An attempt was made, as described in this paper, to assign material properties like shear strength and modulus of elasticity randomly. In this way, the behaviour of a masonry wall with a prefabricated concrete lintel was experimentally tested and simulated using COMSOL. The paper ... Saiba Mais

Virtual Thermal Ablation in the Head and Neck using COMSOL Multiphysics

U. Topaloglu[1], Y. Yan[2], P. Novak[2], P. Spring[3], J. Suen[3], and G. Shafirstein[3]
[1] Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[2]Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[3]Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

Thermal ablation in the head and neck requires accurate thermal dose delivery to target tissue while protecting the structure and function of nearby tissue and organs. In this study, we present a method that allows importing Computed Tomography (CT) scans to COMSOL, in order to model ... Saiba Mais

Experimentally Matched Finite Element Modeling of Thermally Actuated SOI MEMS Micro-Grippers Using COMSOL Multiphysics

M. Guvench[1], and J. Crosby[1]
[1]University of Southern Maine, Gorham, Maine, USA

In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the ... Saiba Mais