Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design and Analysis of MEMS Gyroscope

L. Sujatha[1], B. Preethi[1]
[1]Rajalakshmi Engineering College, Chennai, India

MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the reduction of the damping effect. This MEMS based gyroscope was designed using COMSOL Multiphysics 4.2a. This ...

Exploratory FEM-Based Multiphysics Oxygen Transport and Cell Viability Models for Isolated Pancreatic Islets

P. Buchwald
Diabetes Research Institute and the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA

Cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions and fully scaled 2D/3D geometries have been implemented in COMSOL Multiphysics for isolated pancreatic islets. Oxygen consumption was assumed to follow Michaelis-Menten–type kinetics and to cease when local concentrations fell below a critical threshold. Results are in good agreement ...

Magnetic Levitation System for Take-off and Landing Airplane – Project GABRIEL

K. Falkowski[1], K. Sibilski[1]
[1]Wroclaw University of Technology, Wrocław, Poland

In the paper will be presented the construction of passive magnetic suspension with superconductors. The system of magnetic suspension was designed for GBRIEL project. There is presented numerical test bench of passive magnetic suspension with superconductor. This kind of suspension was selected for generation of magnetic levitation forces in a sledge of take-off and landing system of an ...

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Residence Time Distribution for Tubular Reactors - new

L. R. de Souza Jr.[1], L. Lorenz[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

In the core of Chemical Engineering is the reactor design that includes most of all scientific disciplines. The reactors, in general, are treated ideally. Unfortunately, it is observed in the real world a very different behavior from that expected. Thus, to characterize nonideal reactors is used, among others, residence time distribution function E(t). The aim of this present work is to ...

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Fully Coupled Thermo-Hydro-Mechanical Modeling by COMSOL Multiphysics, with Applications in Reservoir Geomechanical Characterization

T. Freeman[1], R. Chalaturnyk[1], and I. Bogdanov[2]
[1]University of Alberta, Edmonton, AB, Canada
[2]Centre Huile Lourde Ouvert et Expérimental (CHLOE), France

Because of the complex nature of geomaterials and presence of solid and fluid within a single system, it is crucial to consider all the physics involved within the geomaterial system. A fully coupled thermo-hydromechanical model is developed. The model consists of a three-phase flow model designed as a set of coupled PDE application modes that when coupled with the Heat Transfer Module and ...

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

Multiphysics Simulations of Automotive Muffler

A. Prasad [1], R. C Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, India

This paper deals with the numerical experiments for early prediction of muffler performance at the design stage. In this experiment, a Reactive Muffler is developed and validated numerically compared to traditional built and test process.

The Virtual Aquarium: Simulations of Fish Swimming

M. Curatolo [1], L. Teresi [2],
[1] Department of Engineering, Università Roma Tre, Roma, Italy
[2] Department of Mathematics and Physics, Università Roma Tre, Roma, Italy

Our goal is to reproduce the key features of carangiform swimming by running 2D simulations which fully exploit the Fluid-Structure Interaction interface of COMSOL Multiphysics software. Fish swimming is an important area of research, with relevant developments on biomechanics, robotics and mathematical modeling. Usually, in fish swimming simulations, the motion of the fish is assigned, and much ...