Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Near-Field FEM Simulations: A Vital Tool for Studying Silver-Based Plasmonic Systems

R. Asapu [1], S. W. Verbruggen [2], N. Claes [3], S. Bals [3], S. Denys [1], S. Lenaerts [1],
[1] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium
[2] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium; Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
[3] Department of Physics, EMAT Research Group, University of Antwerp, Antwerp, Belgium

Silver nanoparticles are valuable in the field of plasmonics since silver has a higher field enhancement factor compared to other metals that possess plasmonic properties. The plasmonic properties of silver nanoparticles can be finely tuned to the incident light wavelength through their size, shape and dielectric environment, and they have long-term stability. In this work, an ultrathin polymer ...

COMSOL Multiphysics® Software as a Metasurfaces Design Tool for Plasmonic-Based Flat Lenses

B. Adomanis [1], D. B. Burckel [2], M. Marciniak [1],
[1] Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
[2] Sandia National Laboratories, Albuquerque, NM, USA

Introduction: Flat lenses require precise control of a phase gradient across an interface, which is enabled through the application of engineered surfaces, such as Metasurfaces [1]. Periodic arrays of plasmonic antennas have been utilized to generate this desired phase gradient, which dictates the angle of “anomalous” refraction of the cross-polarized field scattered from a normal-incidence ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely uniform grating structures matched to conventional scalar fiber modes. The performance of these geometries can be ...

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or material attributes that allow them to be selected as candidates in solar dryer designs. 1–7 ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality factor of axisymmetric resonators with high accuracy in COMSOL. We treated the perfectly matched layer as an ...

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Z. Zheng
School of Electronic and Information Engineering, Beihang University, Beijing, China

Design and optimization of the nanophotonic devices are critical in realizing advanced photonic integrations in the future. COMSOL can be used for simulating various types of nanophotonic devices involving different materials and dimensions. This report talks about some recent work of Prof. Zheng’s team, including the simulation of dielectric photonic waveguides, optic fibers and surface plasmon ...

Modeling of Laser Processing For Advanced Silicon Solar Cells

G. Poulain[1], D. Blanc[1], A. Kaminski[1], B. Semmache[2], and M. Lemiti[1]
[1]Université de Lyon: Institut des Nanotechnologies de Lyon INL, CNRS, INSA de Lyon, Villeurbanne, France
[2]SEMCO Eng., Montpellier Cedex 5 - France

Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional processing steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the ...

Full-Wave Analysis of Nanoscale Optical Trapping

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

Plasmonic-based optical trapping is in its infancy and growing rapidly. Research in this area will significantly advance fundamental understanding in fields such as nanophotonics and biophotonics. Novel plasmonic trapping structures and systems can be designed and optimized using the COMSOL RF solver.   We present a study of plasmonicbased optical trapping of neutral sub-wavelength ...