Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Simulation of Fourth-Order Laterally-Coupled Gratings

R. Millett, A. Benhsaien, K. Hinzer, T. Hall, and H. Schriemer
Centre for Research in Photonics, University of Ottawa, Ottawa, ON, Canada

Distributed feedback lasers improve the performance of standard Fabry-Perot laser designs by including a wavelength-selective grating that provides superior output, spectral purity and temperature stability. Laterally-coupled distributed feedback (LC-DFB) lasers with the use of higher order gratings have a grating that has been patterned out of the waveguide ridge which allows for simplified ...

Modeling of III-Nitride Quantum Wells with Arbitrary Crystallographic Orientation for Nitride-Based Photonics

M. Kisin, R. Brown, and H. El-Ghoroury

Ostendo Technologies, Inc., Carlsbad, CA, USA

A program for self-consistent modeling of electron-hole energy spectrum and space-charge distribution in III-nitride based quantum well (QW) structures has been developed. The model takes into consideration full 6-band description of the valence band states, nonparabolicity of the electron spectrum, quantum confinement of electrons and holes, strain induced modifications of the band structure, ...

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh to accommodate the moving boundary. The electromagnetics model consist of four multiphysics models, two ...

Multiphysics Modeling of Electro-Optic Devices

J. Toney
Srico, Inc.
Columbus, OH

Designers of electro-optic modulators and related devices often use separate tools to study the optical and electrical portions of the device. The flexibility of COMSOL Multiphysics makes it possible to construct unified models of EO phenomena including realistic waveguide profiles and anisotropic material properties. We demonstrate the use of the RF Module to compute both RF and optical ...

Determination of the Optical Properties of Individual Gold Nanorods through Numerical Modeling and Experiment

Y. Davletshin[1], J.C. Kumaradas[1]
[1]Ryerson University, Toronto, ON, Canada

The optical scattering and absorption of gold nanorods (GNRs) depends on its size, shape, and surroundings. This dependence is due to both intrinsic and extrinsic effects. A good understanding of this dependence is needed for applications of GNRs in photo-thermal therapy, optical and opto-acoustic imaging, biosensing, and other photonic areas. Extrinsic effects are caused by the production of ...

Solving the Paraxial Wave Equation using COMSOL

P. Mikulski, K. Mcilhany, and R. Malek-Madani
United States Naval Academy
Annapolis, MD

Here we present and discuss numerical solutions to the paraxial wave equation using COMSOL (2D, PDE, General Form, time-dependent analysis). Ultimately, the goal is to extend this treatment of free-space beam propagation to the case of propagation through a medium that is non-uniform and subject to non-linear effects where the beam itself is modifying the properties of the medium in which it is ...

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are promising UV sources for the future, provided the coupling between their power supply is optimized. The model ...

Heating of Metal Nanoparticles on Absorbing Substrates

L. Bergamini [1], O. Muskens [2], N. Zabala [1], J. Aizpurua [3]
[1] UPV/EHU, Bilbao, Spain; Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain
[2] University of Southampton, Southampton, UK
[3] Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain

It is well-known that metal nanoparticles (NPs) excited at the plasmon frequency not only exhibit peculiar optical properties (e.g., a peak in the extinction spectrum, an enhanced electromagnetic near-filed) but also heat up [1]. This phenomenon is highly investigated for medical applications, but it can be exploited also for the realization of optical devices. In our study we use COMSOL ...