Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

COMSOL Multiphysics® Software Used as a Laplacian Potential Simulator for an Electrospray Propulsion System Extraction Region

S. Gallucci [1], P. Mirbod [1],
[1] Clarkson University, Potsdam, NY, USA

Electrospray propulsion is a contemporary type of thruster technology that electrostatically drives particles through an extractor grid without the need of a pump. The basis of this propulsion system is the coalescence of propellant into a Taylor cone and through a charged extraction grid. Analysis of the Taylor cone to extraction grid area, known as the extraction region, aims to define the ...

Studies of Sound Radiation from Beams with Acoustic Black Holes

C. Zhao [1], M. G. Prasad [1],
[1] Stevens Institute of Technology, Hoboken, NJ, USA

Recently, acoustic black holes (ABH), a new passive structural modification approach to control vibration and noise from mechanical structures have been developed and studied. This preliminary study presents the work on the influence of acoustical black holes on the vibration and sound field of beams. The simulation and experimental results show that the parameters m and a in the power law ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation give ...

Spectroscopic Modeling of Photoelectrochemical Water Splitting

P. Cendula [1], J. O. Schumacher [1],
[1] Institute of Computational Physics, Zurich University of Applied Sciences, Winterthur, Switzerland

A photoelectrochemical (PEC) cell uses solar energy to split water to hydrogen and oxygen in single integrated device. Electrochemical impedance spectroscopy is a suitable tool to characterize recombination and reaction mechanisms in PEC cell. Full numerical drift-diffusion calculations of the electrochemical impedance were conducted. The linear dependence of abscissa (real part) in Nyquist ...

Simulation of the Flow of an Autonomous Spherical Ball inside a Pipeline

W. Chalgham [1], A. C. Seibi [1], M. Mokhtari [1],
[1] University of Louisiana at Lafayette, Lafayette, LA, USA

One of the limitations of pipelines performance and structural integrity assessment is the continuous inspection of possible leaks due to corrosion or other types of failure mechanisms. Efforts to develop new technologies started several decades ago where different inspection techniques were used to enhance pipelines structural integrity. However, although available technologies present some ...

Oxidation of Titanium Particles during Cold Gas Dynamic Spraying

A. Malachowska[1], L. Pawlowski [1], A. Ambroziak [2], M. Winnicki [2], P. Sokolowski[2]
[1]University of Limoges, Limoges, France
[2]Wroclaw University of Technology, Wroclaw, Poland

This paper studies oxide forming on titanium, during cold gas dynamic spraying with air. This is a quite new spraying method, which can be used to spray material having high affinity for oxygen. The model allows for the diffusion of oxygen through the oxide layer, reaction on the oxide-titanium interface and expansion of oxide, due to difference in molar density. It was implemented in COMSOL ...

Field Joint Coatings for Deep Sea Pipelines - new

R. Verhelle[1], L. Van Lokeren[1], S. Loulidi[1], H. Boyd[2], G. Van Assche[1]
[1]Physical Chemistry & Polymer Science, Vrije Universiteit Brussel, Brussels, Belgium
[2]Heerema Marine Contractors, Leiden, The Netherlands

COMSOL Multiphysics® software is used to model the field joint application process on carbon steel pipelines for deep sea crude oil transportation, taking into account not only heat transfer, cure kinetics, and crystallization, but also thermal, cure and crystallization shrinkage and the resulting interfacial thermal stresses. Experimental data from the raw materials are implemented in the model ...

Embedded Microfluidic/Thermoelectric Generation System for Self-Cooling of Electronic Devices - new

R. Kiflemariam[1], H. Fekramandi[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 3D electro-conjugate heat transfer model was made to study an embedded microfluidic/TEG system (μF/TEG) system. An innovative embedded microfluidic/TEG system (μF/TEG) system is proposed which enables a device to be able to provide power to its cooling system eliminating external power input and resulting in energy efficient and more reliable heat removal system. The research identifies ...

Calibration of a Bio-Kinetic Model to Simulate Microalgae Growth - new

A. Solimeno[1], J. Garcia[2]
[1]Department of Hydraulic, Maritime and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Universitat Politecnica de Catalunya, Barcelona, Spain

The aim of present work is to present and calibrate a new mechanistic model that includes physical and biokinetic processes to reproduce the algae growth in photobioreactor or ponds during long-term scenarios. A COMSOL Multiphysics® model is used to implement the microalgae processes mainly based on River Water Quality Model 1 (RWQM1) (Reichert et al., 2011). The main innovation of the model is ...

Simulation of the Effects of Nano-filler Interactions in Polymer Matrix Dielectric Nanocomposites

Y. Jin [1], R. A. Gerhardt [1],
[1] Georgia Institute of Technology, Atlanta, GA, USA

The finite element method was used for simulating the dielectric response of polymer matrix dielectric composites with randomly and evenly distributed fillers. The dielectric simulation of the composite materials was conducted using a time harmonic-electric current solver in the AC/DC Module of the COMSOL Multiphysics® software. The calculations were performed for a wide range of filler contents ...