Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Push or Pull, How Does Silk Flow?

J. Sparkes [1],
[1] University of Sheffield, Sheffield, UK

Silk is one of the longest used and most recognizable textiles that we, as a society, use regularly. We see it as a luxury good, worn as an indicator of success and value. However, despite mankind having domesticated and farmed silkworms for millennia, we still know relatively little about the manufacturing process which converts the liquid silk into the fibers we are so familiar with. Increased ...

Design and Analysis of Micro-tweezers with Alumina as Gripper Using COMSOL Multiphysics

V. S. Selvakumar, M. S. Gowtham, M. Saravanan, S. Suganthi, and L. Sujatha
Rajalakshmi Engineering College
Chennai, India

Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro actuation. In this paper, we discuss about the effects of Alumina as gripper on the operation of micro tweezers. The ...

Resonant Frequency Analysis of Quartz Shear Oscillator

T. Satyanarayana[1], V. Sai Pavan Rajesh[2]
[1]NPMASS Centre, Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India
[2]Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India

The most commonly used type of resonator is the AT-cut, where the quartz blank is in the form of a thin plate cut at an angle to the optic axis of the crystal. This paper reports the modeling of a quartz oscillator for a resonant frequency analysis based on piezoelectric effects. The proposed oscillator consists of a single quartz disc with two electrodes on the top and bottom surfaces of the ...

Modeling of Vibrating Atomic Force Microscope´s Cantilever within Different Frames of Reference

E. Kamau, and F. Voigt
University of Oldenburg, Germany

Cantilever vibration modes were simulated with COMSOL Multiphysics. In the 1st approach the model consisted of an excitation piezo, a holder plate and a chip where the cantilever was mounted on. A sinusoidal voltage signal was applied to the piezo in the simulation, which resulted in movements of the holder plate and finally led to the excitation of the cantilever. In the 2nd approach the model ...

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University
China

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the dielectric–film ...

Janus 颗粒自驱运动的数值模拟

崔海航 [1], 王雷磊 [1], 谭晓君 [1],
[1] 西安建筑科技大学,西安,陕西,中国

Janus 颗粒是由物理或化学性质不同的两部分所构成的颗粒的总称。由于其结构的特殊性以及自驱动特性使其在MEMS、药物传输等领域有着潜在的应用价值。本文基于COMSOL Mutiphysics® 4.3a 多物理场耦合模拟平台对不同形状的 Pt-SiO2 型 Janus 颗粒的在不同浓度 H2O2 溶液中的自扩散泳动进行了数值模拟,并进一步研究模拟了球形 Janus 颗粒的近壁面运动。

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As ...

Droplet Generation by Means of a Two-Fluid Probe

B.P. Cahill[1], M. Quade[1], G. Gastrock[1], K. Lemke[1], J. Metze[1], and D. Beckmann[1]

[1]Institut für Bioprozess und Analysenmesstechnik e.V., Rosenhof, Heilbad Heiligenstadt, Germany

This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn into the inner tubing. In this way, droplets of cell medium are entrained into the outlet tubing forming a ...

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...