Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Development and Characterization of High Frequency Bulk Mode Resonators

H. Pakdast, Z. Davis
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark

This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids.  The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q-factor. A high resonance frequency is desirable because a small change in the resonator’s mass, for ...

The Effect of Electrochemical Micro-Milling by Rotating Magnetic Field

H-Y. Shen[1], H-P. Tsui[1], J-C .Hung[1], S-Y. Lin[2], and B-H. Yan[2]
[1]Metal Industries Research and Development Centre, Taichung, Taiwan
[2]National Central University, Chungli, Taiwan

In this work, the process of micro-channels in electrochemical micro-milling by using rotating magnet assisted helical tool is presented. The results show helical tool and Lorentz force of the rotating magnetic field that enhance the renewal of the electrolyte and machining efficiency. The feed rate can be raised under the magnetic field assisted in terms of experimental results; moreover, the ...

Simulation of Thermal Sensor for Thermal Control of Satellite Using COMSOL Multiphysics

G. Mangalgiri
Goa, India

The actuator comprises of a temperature sensitive composite deflecting beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes an expansion in the composite beam thereby causing it to deflect. The deflecting beam impinges on the piezoelectric crystal and generating voltage. Response curves for the deflection versus temperature for temperature ranges ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Modeling Partially Absorbing Biosensors

D. Kappe[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Designing and constructing a lab-on-a-chip device poses a variety of questions. Transport of all required substances, detection of the analyte and its deposition on a sensor have to be incorporated. Different strategies have been developed to achieve good coverages of the sensor, like employing electric or magnetic gradients. On the basis of a ramp like structure, the binding of the analyte to a ...

Simulation of MEMS Based Pressure Sensor for Diagnosing Sleep Disorders

J. Vijitha[1], S. S. Priya[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Sleep apnea is a type of sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. There is a need to diagnose sleep apnea since it leads to fluctuations in the oxygen level that in turn affect the heart rate and blood pressure. In order to detect this disorder, a Micro Electro Mechanical System (MEMS) based piezoelectric pressure sensor was ...

Droplet Generation by Means of a Two-Fluid Probe

B.P. Cahill[1], M. Quade[1], G. Gastrock[1], K. Lemke[1], J. Metze[1], and D. Beckmann[1]

[1]Institut für Bioprozess und Analysenmesstechnik e.V., Rosenhof, Heilbad Heiligenstadt, Germany

This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn into the inner tubing. In this way, droplets of cell medium are entrained into the outlet tubing forming a ...

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature superconducting (HTS) coil based on a HTS coated conductor tape lays on a thorough understanding of its slowly propagating, three-dimension (3D) quench behavior. Toward this goal, a 3D micrometer scale finite element (FE) thermo-magnetostatic HTS tape model is developed and implemented in ...

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

Multiphysics FEM Simulations Approach for Development of a MEMS Heat Generator

G. S. Masi[1], S. V. De Guido[1], G. Montagna[2], C. Martucci[2], P. M. Congedo[1], L. Vasanelli [1], M. G. Manera[2], R. Rella[2]
[1]Department of Innovation Engineering, University of Salento, Lecce, Italy
[2]CNR-IMM, Lecce, Italy

Introduction: Accurate fluid temperature control in microfluidic channels is a requirement for many lab-on-chip and micro-reactors.Thin films resistive metal heaters have proven to be the best choice for localizing heating applications with integrated microfluidic systems. A thin platinum layer has been chosen as the metal used to realize the meander because of its positive and linear temperature ...

Quick Search