Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University
China

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the dielectric–film ...

Mechanical Model of RF MEMS Capacitor Structures

R. Chatim[1]
[1]University of Kassel, Kassel, Germany

In order to design an RF MEMS based device, it is beneficial to have information concerning mechanical behavior. For model verification purpose, solution offered by simulation software equipped with predefined physics application is one valuable way to provide initial reference. To avoid unwanted particular total strain in RF MEMS structures, a compensation layer can be utilized. When the number ...

Electron Trajectories in Scanning Field-Emission Microscopy

H. Cabrera [1],
[1] Swiss Federal Institute of Technology, Zurich, Switzerland

The Scanning Field Emission Microscopy (SFEM) is a novel technology similar to the better known Scanning Tunneling Microscopy (STM). In STM, electrons are exchanged between the outermost atom of a sharp tip and the outermost atom of a target over sub-nanometer distances by means of the quantum mechanical tunnel effect. When the tip is scanned parallel to the surface, the tunneling current can be ...

Oxidation of Metallic Nanoparticles

A. Auge[1], A. Weddemann[1], F. Wittbracht[1], B. Vogel[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

The oxidation behavior of metallic nanoparticles is investigated in respect to material parameters like Mott potential, defects on the microstructure and oxide volume increase per ionic defect. An emphasis is laid on magnetic nanoparticles where the degree of oxidation can be measured via the reduction of the magnetic moment.

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.

MEMS Comb Drive Gap Reduction Beyond Minimum Feature Size: A Computational Study

N. Osonwanne, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to reduce the comb drive gap in micro electro mechanical systems (MEMS) beyond the minimum fabrication feature size. The benefit of reducing the gap space between comb drive fingers is to increase its sensitivity to changes in capacitance due to displacements. The minimum feature size of standard fabrication foundries is 2 microns. To reduce the gap beyond a ...

Evaluation of Tensile Modulus of Carbon Nanotube Bundle Based Composite with Interface Using Finite Element Method

M. S. Islam, F. O. Riktan, S. C. Chowdhury, M. M. R. Chowdhury, and S. Ahmed
Bangladesh University of Engineering & Technology (BUET)
Dhaka, Bangladesh

Carbon Nanotubes (CNTs) have remarkable mechanical, thermal and electrical properties. The properties of CNTs depend on atomic arrangement (how the sheets of graphite are rolled), the diameter and length of the tubes and morphology of nanostructure. In this paper effective elastic properties of CNT based polymer composites are evaluated using a square Representative Volume Element (RVE) in ...

Carbon MEMS Accelerometer

J. Strong, and C. Washburn
Sandia National Laboratories
Albuquerque, NM

The newly emerging field of carbon-based MEMS (C-MEMS) attempts to utilize the diverse properties of carbon to push the performance of MEMS devices beyond what is currently achievable. Our design employs a carbon-carbon composite using nano-materials to build a new class of MEMS accelerometer that is hyper-sensitive over a dynamic range from micro-G to hundreds of G’s – far surpassing the ...

Design and Simulation of MEMS Based Gyroscope for Vestibular Prosthesis

R. Nithya[1], K. Kavitha[1], R. K. Shahana[1], A. Gupta[1], M. Alagappan[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

The primary function of the vestibular system is to provide the brain with information about the body\'s motion and orientation. The absence of this information causes blurred vision and spatial disorientation, vertigo, dizziness, imbalance, nausea, vomiting, and other symptoms often characterize dysfunction of the vestibular system. Our aim is to design vestibular prosthesis using COMSOL ...

Study of Pull-In Voltage in MEMS Actuators

P. D. Hanasi[1], B. G. Sheeparamatti[1], B. B. Kirankumar[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

Micro cantilevers are the basic MEMS structures, which can be used both as sensors and actuators. The . The objective of this work is to study concept of pull-in voltage and how to reduce the same. Voltage is applied to upper cantilever beam and lower contact electrode is made as ground. By increasing common area between cantilever beam and contact electrode, and also by reducing thickness of ...