Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Design, Simulation, and Fabrication of Thermal Angular Accelerometers

H. Alrowais [1],
[1] School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

This abstract introduces a sensor design for detecting angular acceleration in a single plane using thermal convection. The working principal of the device is based on probing temperature profile changes along a micro-torus caused by angular acceleration. By properly choosing the locations of the heaters as well as the temperature sensors, the output signal will correlate to in-plane angular ...

FEM Study on Contactless Excitation of Acoustic Waves in SAWDevices

A. K. Namdeo[1], N. Ramakrishna[2], H. B. Nemade[1,2], and R. P. Palathinkal[1]

[1] Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Assam, India
[2] Centre for Nanotechnology. Indian Institute of Technology Guwahati, Assam, India

In this paper a finite element method(FEM) study of a surface acoustic wave (SAW)device excited by electrostatic coupling method is performed by using COMSOL Multiphysics. We have modeled a Rayleigh wave type SAW device by choosing YZ Lithium niobate as the substrate. The effect of external radio frequency (RF) field to the SAW device is analyzed. The effect of distance between the contactless ...

Study of Artificial Molecular Engines Action Through COMSOL Multiphysics® Program

L. Moro[1], F. Lugli[1], and F. Zerbetto[1]

[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

Rotaxanes are a class of molecules recently developed in laboratory that have been heralded as possible molecular motors. The motor is constituted by a linear molecule (thread) and a ring-shaped molecule (macrocycle), which is free to move along the thread, switching between two, or more, energetically stable interaction points (stations). Molecular motors start their functioning far from ...

Detection of Magnetic Particles by Magnetoresistive Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]
[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we demonstrate the implementation of the micromagnetic equations for the description of ferromagnetic thin films in COMSOL Multiphysics®. We apply our model to magnetoresistive sensors consisting of several soft ferromagnetic layers and their response to magnetic particles. The magnetization dynamic of the particles needs to be described in a similar manner, though due to size ...

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based modelling. Since then, he has focused on carbon material and process simulation employing methods of optimization ...

Polymer Nanowire based Impedance Biosensor

N. Das[1], C. R. Chaudhuri[1]
[1]Department of Electronics and Telecommunication, BESUS, Howrah, West Bengal, India

In this paper, we have proposed an impedance biosensor based on polymer nanowire (made of polyaniline) for efficient electric field mediated capture of biomolecules. Existing polymer nanowire based biosensors fail to achieve high sensitivity for low surface to volume ratio as the whole length of the nanowire is exposed to the analyte .Also biosensors are dependent on diffusion mediated capture ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

The Origin of Mass-change Sensitivity within Multi-layered, Non-uniform, Piezoelectrically-actuated Millimeter-sized Cantilever (PEMC) Biosensors: Vibrational Analysis through Experiment and Finite Element Modeling (FEM)

B.N. Johnson[1], and R. Mutharasan[1]

[1]Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA

A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that have demonstrated high sensitivity to mass-change in experimentally fabricated sensors. The fundamental bending mode of vibration and the 1st bending harmonic are predicted at 10.0 kHz and 86.8 kHz, respectively, within approximately 5 % of the experimentally measured resonances. The ...

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and nano- scale since it diminishes the high performance of MEMS devices. For instance, depending on the stiffness ...

µHeater on a Buckled Cantilever Plate for Gas Sensor Applications

A. Arpys Arevalo Carreno[1], E. Byas[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

In semiconductor gas sensors, the base of the gas detection is the interaction of the gaseous species at the surface of the semiconducting sensitive material. Since the chemical reactions at the surface of the sensor material are functions of temperature. We simulate our µHeater design on a Buckled Cantilever Plate (BCP). Such structure allows the sensor to be suspended for thermal insulation. ...