Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids

Priyanshu Goyal[1], Anu Dutta[1], V.Verma[1], I. Thangamani[1], R.K. Singh[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

Shielded transportation casks are commonly used for transportation and storage of radioactive waste materials. Design approval of such casks by regulatory authority is subject to its compliance with a thermal test (among other tests) Due to exposure of cask to fire , there is a possibility of melting of the shielding material (lead) used for the cask and need to evaluate extent of melting. ...

Single-Phase Modeling in Microchannel with Piranha Pin Fin

X. Yu [1], C. Woodcock [1], Y. Peles [2], J. Plawsky [1],
[1] Rensselaer Polytechnic Institute, Troy, NY, USA
[2] University of Central Florida, Orlando, FL, USA

Microchannel has shown potential to dissipate high heat flux in past years [1][2]. At the same time, liquid cooling attracts more and more attention from researchers for its favorable thermal properties and ability to cool down hot and keep acceptable system temperature [3][4][5]. This work aims at modeling single-phase and two-phase flow boiling heat transfer and fluid flow with COMSOL ...

Modeling of a Counter Flow Plate Fin Heat Exchanger - new

R. Jia[1], J. Hu[1], X. Xiong[2]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA

Plate fin heat exchangers are widely used for heat recovery or cooling purposes in many industries, such as cryogenics, aerospace and automobile industries. This paper developed a numerical model to simulate the heat transfer and fluid flow in a counter flow plate fin heat exchanger and optimize its design parameters. The conjugate heat transfer in the finned plate and fluids in the channels ...

Natural Convection around Horizontal Cylinders subjected to Non-uniform Heating

I. Khan [1],
[1] University of Central Lancashire, Preston, United Kingdom

A two-dimensional steady model of the natural convection around a cylinder is solved numerically using COMSOL Multiphysics software. The cylinder receives non-uniform heat from a radiating panel, which is assumed to be sufficiently far away so that the flow around the panel does not interfere with the cylinder. Changes in temperature and velocity are monitored for varying heating rates and ...

Combining Multiphysics Modeling and Solution Thermodynamics Using M4Dlib, an External Library

T. Marin-Alvarado [1],
[1] M4Dynamics, Toronto, ON, Canada

An external library, M4Dlib [1], has been developed to solve multiphysics problems coupled to solution thermodynamics. This approach extends the local equilibrium concept[2] to multiphysics modeling by incorporating a full Gibbs energy minimization routine at each numerical node to calculate the equilibrium based on global temperature, enthalpy or concentration conditions (Figure 1). The ...

Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot

M. M. Nahar [1], H. Moon [1], G. S. Bindiganavane [1], J. Nikapitiya [1]
[1] Department of Mechanical and Aerospace Engineering, University of Texas - Arlington, Arlington, TX, USA

Electrowetting on Dielectric (EWOD) is a versatile tool for performing basic operations in Digital Microfluidic Systems. In EWOD, surface tension between a liquid droplet and solid substrate is modulated by applying voltage to an electrode and a hydrophobic surface is transformed into a hydrophilic one. Thus a droplet partially placed on the activated electrode can be moved due to asymmetric ...

3D Simulation of Laser Interstitial Thermal Therapy in the Treatment of Brain Tumors

M. Nour [1], A. Lakhssassi [1], E. Kengne [1], M. Bougataya [1],
[1] Université du Québec en Outaouais, Gatineau, QC, Canada

Abstract: Due to the restriction of the number of probes that a patient can tolerate, and the inaccurate information provided by the invasive temperature measurements, which provide information only at discrete points, a mathematical model simulation is more effective to help doctors in planning their thermal treatment doses. This will maximize therapeutic effects while minimizing side effects. ...

Numerical Prediction of Weld Bead Geometry in Plasma Arc Welding of Titanium Sheets - new

V. Dhinakaran[1], S. Khope[1], N. S. Shanmugam[1] , K. Sankaranarayanasamy[1]
[1]National Institute of Technology, Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India

Plasma Arc Welding (PAW) is one of the important arc welding processes commonly used in electronics, medical, automotive and aerospace industries due its high accuracy, finishing, and ability of welding any hard materials. It is an extension of Tungsten Inert Gas welding (TIG or GTAW). PAW has been unnoticed because it is more complex and requires more expensive equipment compared to other ...

Heat Generation Modeling of Two Lithium Batteries: from the Cell to the Pack in COMSOL Multiphysics® Software

J. Stoudmann [1], R. Rozsnyo [1], T. Mackin [2], J. Dunning [2]
[1] Haute École du paysage, d'ingénierie et d'architecture, Genève, Switzerland
[2] California Polytechnic State University, San Luis Obispo, CA, USA

A thermal model to predict the heat generation during the charge and discharge of a battery pack is an essential tool to manage the thermal behavior, performance and life of the batteries. In this work, a battery cell is modeled in COMSOL Multiphysics® using the Batteries and Fuel Cells module.

Surface to Surface Radiation Benchmarks

J. v. Schijndel [1], R. v. Eck [1], M. Klep [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

The paper presents a student guide on how to implement surface to surface radiation within COMSOL Multiphysics® software for case studies found within the built environment. We included four benchmarks: (1) Radiation in a triangular cavity with infinite length; (2) Radiation between two infinitely long rectangular plates; (3) Radiation in a three dimensional rectangular enclosure; (4) Radiation ...