Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Process Modeling and Optimization of Design Parameters in a Falling Film Plate and Frame Evaporator

A. Donaldson [1], A. Thimmaiah [2],
[1] Dalhousie University, Halifax, Nova Scotia, Canada
[2] National Institute of Technology Karnataka, Mangalore, Karnataka, India.

COMSOL Multiphysics® software is used to explore the impact of distributor width on the film thickness, and the resulting sensitivity of overall thermal efficiency in a plate and frame triple-effect evaporator. A stable film is crucial to maintain a minimum wetting rate, to circumvent the “dry-out condition”. The hydrodynamics of stable film development as a function of distributor width was ...

Simulation of Laser-Material Interactions for Dynamic Transmission Electron Microscopy Experiments

B.W. Reed[1], T.B. LaGrange[1], G.H. Campbell[1], and N.D. Browning[1,2]
[1]Lawrence Livermore National Laboratory, Livermore, CA, USA
[2]University of California Davis, Davis, CA, USA

The Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Laboratory is a unique instrument able to capture images of fast-evolving microstructure with exposure times of only 15 ns. This is more than six orders of magnitude faster than conventional in situ electron microscopy and has enabled new insights into phase transformations, chemical reactions, and materials ...

Smart Radiator Upgrade (Super Smart with Natural Gas)

E. Bozelie[1], P. Bruins[1]
[1]Saxion University Enschede, Enschede, The Netherlands

In heating upgrades, most attention is paid to the boiler. When upgrading to HR++-boilers (eff of 107%) however, difficulties may occur since the high efficiency boilers are designed for water temperatures around 40°C, while the old radiators are designed for water temperatures higher than 60°C. The resulting mismatch may lead to reduced performance, a larger carbon footprint and increased ...

Investigating the Performance of Mechanically Ventilated Double-Skin Facades with Solar Control Devices in the Main Cavity - new

C. G. Galante[1]
[1]Newtecnic Ltd, London, England, UK

The use of ventilated facades may reduce the cooling and heating energy demands of the building. Double-skin facades (DSFs) belong to the wider group of ventilated facades and currently represent one of the most interesting and studied facade systems. The purpose of this study is to investigate the thermal behaviour and performance of a DSF being designed for a real project in the Middle East ...

Coupled Numerical Modeling and Thermodynamic Approach for SiC Growth Process

J. M. Dedulle [1], K. Ariyawong [1], D. Chaussende [2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CNRS, Grenoble, France

Silicon carbide (SiC) single crystals are industrially produced by the physical vapor transport technique. Apart from the geometry of the growth setup, there are two main process parameters that can be controlled: temperature and pressure. To support the development of the process, numerical simulation has imposed as the only tool able to describe the process itself, providing a good evaluation ...

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

K. Z. Gomes [1], T. A. G. Tolosa [1], E. V. S. Pouzada [1],
[1] Mauá Institute of Technology, São Caetano do Sul, SP, Brazil

In this work, a methodology is developed, based on the application of finite element method in the frequency domain, using the COMSOL Multiphyics software, aiming the sensibility analysis of inductance calculation involving some configurations of an E-core magnetic circuit. Such important analysis, are made from several geometries and considering different frequencies for the source current ...

Tunnels, a New Potential Source of Energy: 3D Modeling of a Heat Exchanger within Tunnel Lining

C. Soussi [1], O. Fouché [2], G. Bracq [3], S. Minec [3],
[1] Le Cnam, Paris, France
[2] Ecole des Ponts, Champs-sur-Marne, France
[3] Bouygues Construction, Saint-Quentin-en-Yvelines, France

This work investigates the possibility of thermal activation of future tunnels to heat and/or cool the surface buildings or infrastructure such as subways stations. The principle is to insert pipes in the tunnel lining segments, which are connected to a geothermal pump. A heat transfer fluid antifreeze circulates inside the tubes to exchange heat with the surrounding environment (tunnel air and ...

Heat Transfer Model for Embedded Thermocouple in Firefighter Glove

D. Mrugala, T. Riebeck, and W. Lang
Institute for Microsensors, -actuators and –systems (IMSAS)
University of Bremen
Bremen, Germany

The Integration of contact heat measurement with intelligent fire fighter gloves assumes parametric simulations with the heat transfer module of COMSOL. A thermocouple is embedded into high temperature protective layers of the glove and measures contact heat. This is done by by pressing the hand backside of the glove against a hot device like a door. The Heat transfer module has been used to ...

Use of Simulation in the Development of Next-generation Measurement Standards for Radiation Dosimetry

R. E. Tosh[1], H. Chen-Mayer[1]
[1]NIST, Gaithersburg, MD, USA

Calibration of field instruments used in radiation treatment clinics is currently traceable to NIST primary standards via protocols involving static, flat-field radiation beams. By contrast, radiation beams prescribed for treating cancer incorporate temporal and spatial modulation strategies in order to maximize dose to the tumor while sparing healthy tissue. Differences in the detector ...

Determination of the Load-dependent Thermal Conductivity of Porous Adsorbents

O. Kraft [1], J. Gaiser [1], M. Stripf [1],
[1] University of Applied Sciences, Karlsruhe, Baden-Würtemberg, Germany

Standard measuring techniques for thermal conductivity cannot be readily applied to determine the load-dependent thermal conductivity of porous adsorbents, because the local ad- and desorption inside the specimen and the thickness of the specimen are not considered. Hence, in this work a new measuring procedure combining the transient hot bridge (THB) with a three dimensional finite element ...