Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Virtual Modeling of Thermo-Physiological Comfort in Clothing

P. Van Ransbeeck [1], R. Benoot [1], B. Van Der Smissen [1]
[1] University College Ghent, Faculty of Science and Nature, Department of Mechatronics, Belgium

This publication aims to investigate conjugate heat and mass transfer around a clothed virtual manikin. This research can be performed at different scales: (1) at material scale where a piece of textile is investigated in 1D or 2D space or (2) at system level where a clothed cylindrical body (2D) or a complete manikin (3D) is modeled. The work is based on previous methods and results from ...

Optimization of a Thermoelectric Conversion System

J. R. Chase [1],
[1] Alphabet Energy, Hayward, CA, USA

Thermoelectric materials have no theoretical limit to conversion efficiency of heat into electrical power. In order to compete with other forms of power generation and small-scale energy conversion, thermoelectric converters need to maximize their practical usability when integrated with real-world sources of waste heat, and in real-life service environments. This trade-off reduces itself to ...

Heat and Mass Transfer in a Gypsum Board Subjected to Fire

B. Weber
Empa
Swiss Federal Laboratories for Materials Science and Technology
Duebendorf, Switzerland

Heat and mass transfer through a gypsum board exposed to fire is simulated and compared to experimental data. The gypsum board is modeled as a porous medium with moist air in the pores. A dehydration front develops at the fire side and travels through the board, consuming energy and releasing water vapor. The vapor migrates through the porous medium by convection and diffusion, and condenses in ...

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...

Simulation of Thermomechanical Couplings of Viscoelastic Materials

F. Neff [1], T. Miquel [2], M. Johlitz [1],
[1] Universität der Bundeswehr München, Munich, Germany
[2] École polytechnique, Palaiseau, France

Using COMSOL Multiphysics® software, a new model was implemented with the Physics Builder functionality, which provides a thermomechanical coupling. It consists of two independent physics interfaces, one for the mechanical, viscoelastic behavior and one for the heat transfer. With the multiphysics coupling features it is now possible to add the effects of thermal expansion and dissipation or ...

Numerical Simulation of a Building Envelope with High Performance Materials

M.H. Baghban[1], P. Jostein Hovde[1], and A. Gustavsen[2]
[1]Civil and Transport Engineering Department, Norwegian University of Science and Technology, Trondheim, Norway
[2]Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Trondheim, Norway

Simulation tools for building physics problems play an important role in design and understanding the behavior of energy efficient buildings. There are different tools available for simulation of these problems, but each simulation tool has its own advantages and limitations. In this paper, a heat transfer problem in an exterior building wall with high performance materials has been simulated in ...

Heat Loss Evaluation of an Experimental Set-up for Predicting the Initial Stage of the Boiling Curve for Water at low Pressure

K. T. Witte[1], F. Dammel[2], L. Schnabel[1], and P. Stephan[2]
[1]Fraunhofer Institut Solare Energiesysteme - Department of Thermal Systems and Buildings, Freiburg, Germany
[2]Technische Universität Darmstadt - Institute of Technical Thermodynamics, Darmstadt, Germany

In this paper heat losses and gains are assessed for a specific measuring set-up improving the validity of performance data to accurately predict the initial stage of a boiling curve. Simulation focus on achieving results predicting real measuring data of a plain surface structure. Therefore, the relevant components of the measuring set-up have been implemented in a 2-D axisymmetric model ...

Simulation of Fast Response Thermocouple for the Nuclear Reactor Core

K. Dusarlapudi[1], B. K. Nashine[2], D. Bai[3], and C. S. Babu[1]
[1]KL University, Vaddeswaram, Guntur, Andhra Pradesh, India
[2]E.D&S.S, IGCAR Kalpakkam, India
[3]VIT, Vellore, India

Thermocouples have been used for measurement of temperature ever since the discovery of Seebeck effect. Though the voltage output of a thermocouple is a function of the temperature difference between hot and cold junctions, the response time and the magnitude of voltage depends on the geometry and material of the thermocouple also. This report deals with the study of the mineral-insulted ...

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing ...

Mathematical Model of Vacuum Foam Drying - new

M. Sramek[1], J. Weiss[2], R. Kohlus[1]
[1]Department of Food Processing Engineering, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany
[2]Department of Meat Science and Food Physics, Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany

The mathematical model is closely related to the development of a novel drying method for high viscous and sticky materials. The foamed state facilitates diffusive moisture transport and therefore accelerating the drying process. Moreover the dried porous material can be easily converted into the powder. The mathematical modelling aimed at evaluating the complex drying process as basic ...