Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Poroelasticity Benchmarking for FEM on Analytical Solutions

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

We examine the poroelastics mode, which couples hydraulics and mechanics by some basic benchmarks. For cases with analytical solutions we check the accuracy for changing meshes and calculate the convergence rate.

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using electrodes at the surface. This paper presents a new method for measuring the volume of such an embedded object ...

The Use of COMSOL for Integrated Hydrological Modeling

T. Fong, M. Chui, and D. L. Freyberg
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

Hydrological processes and components are intrinsically coupled, and thus must often be modeled as an integrated system. Unfortunately, although a few modeling codes are available, integrated hydrological modeling remains a challenge.The objective of this paper is to explore the feasibility of using COMSOL Multiphysics for integrated hydrological modeling; in particular, using the generic ...

Aquifer Physics Modes for Hydrogeological Modeling – an Application of the COMSOL Physics Builder

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Although there are porous media and subsurface flow modes available in a toolbox of COMSOL Multiphysics®, some common requirements in hydrogeological models can not be easily accessed in the graphical user interface. Most crucially, there is no distinction between confined and unconfined situations for permeable layers, so called aquifers. Using the Physics Builder for such distinctions aquifer ...

Numerically Generated g-functions for Ground Coupled Heat Pump Applications

J. Acuna[1], M. Fossa[2], P. Monzó[1]
[1]KTH Energy Technology, Stockholm, Sweden
[2]Dime, University of Genova, Genova, Italy

Ground-coupled heat pumps (GCHP) are successfully installed since at about 20 years in many countries to fulfill space conditioning requirements in building applications. In most cases the heat pump is connected to a system of vertical ground heat exchangers (as illustrated in Figure 1) where a fluid is circulated inside a system of pipes inserted in a deep borehole drilled in the soil. Drilling ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Numerical Study of Flux Models for CO2 - Enhanced Natural Gas Recovery and Potential CO2 Storage in Shale Gas Reservoirs

N. Prajapati[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

This work encompasses different physics involved in fluid flow in shale gas reservoir. Non-linear equations for fluid flow are solved with COMSOL Multiphysics® PDE module. It focuses on comparing the performance of various species transport flux models by accounting for inter-molecular interactions and gas-rock interactions.

Simulation of Deep Geothermal Heat Production

E. Holzbecher, P. Oberdorfer, F. Maier, and Y. Jin
Georg-August Universität Göttingen
Göttingen, Germany

Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two legs are connected by highly permeable geological, natural or artificial strata in the deep subsurface. The ...

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not practicable on the reservoir scale, so a Darcy (or Brinkman) approximation has to be found. The key task is to find ...

Coupling Multiphysics with Geochemistry: The COMSOL-PhreeqC Interface

A. Nardi[1], L. M. de Vries[1], P. Trinchero[1], A. Enrique Idiart [1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

Phreeqc is a program for simulating chemical reactions and 1D transport processes in aqueous systems. Several couplings between conservative transport codes and PHREEQC already exist. The methodology used here is based on the operator splitting concept: the transport of the aqueous components and the chemical reactions are solved in two different steps. The Java interface uses the COMSOL Java ...

Quick Search