Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not practicable on the reservoir scale, so a Darcy (or Brinkman) approximation has to be found. The key task is to find ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

The Campi Flegrei Deep Drilling Project ‘CFDDP’: Understanding the Magma-water Interplay at Large Calderas

G. De Natale[1], G. Perillo[2], C. Troise[1], and P. Gasparini[3]
[1]INGV-Osservatorio Vesuviano, Naples, Italy
[2]Università degli Studi di Napoli Parthenope, Naples, Italy
[3]AMRA scarl, Naples, Italy

Campi Flegrei caldera is a good example of the most explosive volcanism on the Earth, a potential source of global catastrophes. It has the advantage that the most interesting structural details and main volcanic features appear located at shallower depth, making it a natural candidate for a deep drilling project aimed to understand the volcanic structure. The CFDDP project, aims to ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Modeling CO2 storage Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå, F. Cuisiat, E. Aker, and E. Skurtveit
Norwegian Geotechnical Institute(NGI), Oslo, Norway

The geomechanical effects related to CO2 injection into the Krechba formation at In Salah, Algeria, are considered through a coupled modeling approach to simulate simultaneously CO2 migration in the aquifer and the surrounding formations, as well as the poro-elastic stress changes occurring during injection. The model is based on the simultaneous resolution of the governing equations for two ...

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...

Erosion Of Buffer Caused By Groundwater Leakages Based On ESM-Application

O. Punkkinen[1], A. Jorma[1], K. Kari[2], and M. Olin[3]
[1]B+Tech, Helsinki, Finland
[2]Posiva, Eurajoki, Finland
[3]VTT, Espoo, Finland

In this work the issue of saturation phase erosion caused by groundwater leakages was approached both experimentally and computationally by employing COMSOL\'s Earth Science Module. We evaluated the total mass of eroded bentonite out of a cylindrical erosion channel both numerically and experimentally, and studied its dependence on time. It was observed that logarithmic eroded mass loss as a ...

微波加热煤岩裂隙变形的电-热-固耦合模型

管伟明 [1], 聂欣 [1],
[1] 新疆大学,乌鲁木齐,新疆,中国

为研究不同加热方式下煤岩内部裂隙在热力耦合作用下的变形特征,建立了微波和常规加热两种数值模型,考查了不同温度场分布特征下裂隙周边应力应变场的变化过程。研究结果表明:微波加热,温度场分布具有内高外低的特征,此时裂隙周边分布的应力多为压应力,且数值较大,裂隙边界位移表现为向内收缩;常规加热,温度场分布具有外高内低的特性,此时裂隙周边分布应力多为拉应力,但量值较低,裂隙边界位移表现为向外扩张;热源越靠近裂隙压应力越明显,反之拉应力明显。