Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Geodynamic Models of the Vøring Volcanic Margin

T. Pedersen
Institute for Energy Technology, Kjeller, Norway

Volcanic margins are characterized by excessive magmatic activity. One of the most studied volcanic margins is the Vøring margin, offshore mid-Norway. The large volumes of magmatic rocks found there are believed to have been produced by the melting of an abnormally hot mantle. We use COMSOL Multiphysics to investigate the hypothesis that the source of this thermal anomaly was a mantle ...

Sheath and Potential Profiles around RP Sensors and the Gondola in the Huygens Experiment

R. Godard
Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, ON, Canada

Preliminary results of the Relaxation probe (RP) in the Huygens experiment have provided evidence that the potential profiles around sensors do not obey to a Laplace field, but to a Poisson field. In this present work, we analyze possible interactions or shadowing effects between sensors, booms and the gondola, and the data processing of RP sensors. The governing equations for the fluid model ...

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

X. Sillen
Belgian Nuclear Research Centre (SCK-CEN), Waste & Disposal Department, Mol, Belgium

Disposal in deep clay geological formations is one of the promising options for disposal of high-level radioactive waste. Yet, they can generate considerable amounts of heat as a side effect of radioactive decay. This paper shows how COMSOL Multiphysics has been used to evaluate the physical impacts of the heating on the geological media around a deep disposal system. The software was found ...

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

Non Linear Mechanical and Poromechanical Analyses: Comparison with Analytical Solutions

M. Souley, and A. Thoraval
Ecole des Mines
Parc de Saurupt, France

The long-term behaviour of the underground excavations is a social and economic challenge particularly in the contexts of post-mining or radioactive waste storage. Numerical modelings are currently used to understand and forecast the complex behaviour of rock mass around the underground cavities. In order to accurately perform these multiphysics modelings at high space and time scales, it is ...

Why We Have Earthquakes in the Eastern United States

J. K. Costain[1]
[1]Virginia Tech, Blacksburg, VA, USA

There are only two types of naturally-occurring earthquakes anywhere on the Earth: 1) those associated with the dynamics of plate tectonics and 2) those associated with the dynamics of the hydrologic cycle. The first type is characteristic of an INTERplate setting (like the San Andreas Fault). The second (“hydroseismicity”) is characteristic of an INTRAplate setting (like the Virginia ...

FE-modelling of Electrical Borehole Tool Responses

Stoll, J.B.
ANTARES Datensysteme GmbH, Stuhr

Electric well logging was the first logging method used below ground in boreholes by the petroleum industry. Of all the rock parameters measured by logging tools, the electrical resistivity is of particular importance. Resistivity measurements are essential for determining the relative amount of hydrocarbons in a formation.

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...

Three Dimensional Bioventing Model

Barakat, E.A., Zytner, R.G.
School of Engineering, University of Guelph, Guelph, Ontario, Canada

Bioventing (BV) is a popular in situ technology for the treatment of petroleum hydrocarbon contaminated soil. Generally, the process involves the stimulation of the native microorganisms by adding nutrients and oxygen to the contaminated soil in the vadose zone. BV can address tailing, where ineffective treatment through mass transfer limitations keeps the contamination level above the regulatory ...

3-D Multiphysics Modeling of a Producing Hydrocarbon Field

McKenna, J.R.1, Blackwell, D.D.2
1 U.S. Army Engineer Research & Development Center, Geotechnical & Structures Laboratory, Vicksburg, Mississippi
2 Department of Geological Sciences, Southern Methodist University, Dallas, Texas

Thermal anomalies indicating elevated temperatures often are present in producing hydrocarbon fields. This paper discusses precision temperature logs obtained over a salt dome in the Bayou Bleu hydrocarbon field in southwest Lousiana, and presents a 3-D thermal-fluid model of the dome constrained by these types of logs. The numerical model in which both an enhanced thermal conductivity ...

Quick Search