Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Passive Cooling of Power Electronics: Heat in the Box

M. Berger[1], W. Schernus[1]
[1]West Coast University of Applied Sciences, Heide, Germany

Results presented are a contribution to the design of a 5kW-DC-AC-converter for applications in forklifts. The device is located in a closed environment and entirely operated with passive cooling. Due to concurrent engineering approach and environmental conditions correct prediction of absolute temperature values by simulation was crucial. Heat sinks have been modeled properly and a thermal ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Metal Foam Tube Flow Characterisation

T. Spillmann[1]
[1]CSIRO, Energy Technology, Newcastle, New South Wales, Australia

In this study the flow through a tube filled with highly porous aluminium foam of three different pore sizes is analysed using COMSOL Multiphysics® CFD Module and compared to experimentally determined pressure drop data. Analyzing the flow through an array of pores allow the deduction of characteristic flow parameters (permeability and form drag coefficient) that are utilized in a 2D ...

Improvements on Liquid Cyclotron Target Loading/Unloading System Using COMSOL Multiphysics®

F. Alrumayan[1], A. Alghaith[1], J. Schneider, [1], M. Ahmed [1], M. Al-Qahtani[1]
[1]King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

A 3D model was developed using COMSOL Multiphysics® to study the flow dynamics of the water inside the geometry of the [13N] Ammonia target for medical application . The image attached shows a 3D model of the target. A significant improvement was noted after modifying the geometry as suggested by the model and delivery time of radioactive solution was dramatically reduced. Water and aluminum ...

A Computational Study of the Reynolds Piped flow Experiment

Sanidhya Painuli[1], Jayasankar Variyar[1]
[1]Vellore Institute Of Technology, School of Mechanical and Building Sciences, Vandalur Kelambakkam Road, Chennai, India

The study of interaction of fluid with matter assumes great significance for most engineering applications. The flow can be either turbulent or laminar, and different types of interactions arise out of these flow. In the introductory undergraduate course of fluid mechanics, a typical demonstration for these interactions is the Reynolds pipe flow experiment. Instabilities of various types like ...

Scattering of mm-Waves by Turbulent Structures in Magnetically Confined Fusion Plasmas

O. Chellaï [1], S. Alberti [1], I. Furno [1], T. Goodman [1], M. Baquero [1]
[1] Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Suisse

In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent scrape-off layer (SOL) at the edge of the confined plasma. Turbulence in the SOL is characterized by ...

Simulating the Flow of Native Silk Feedstocks In Vivo

J. Sparkes [1],
[1] Natural Materials Group, Dept of Materials Science and Engineering, The University of Sheffield, Sheffield, UK

The ability to artificially produce silk fibers has great commercial, industrial and scientific implications. Much has been made of their remarkable mechanical properties but few have considered how they are imparted on the initially liquid silk feedstock.1 I am exploring how silk duct geometry affects the fibers produced as by understanding the flow conditions within the model, and comparing ...

Modelagem Computacional de Difusores para Microbombas

A. G. S. Barreto Neto [1], A. M. N. Lima [2], C. S. Moreira [1],
[1] Instituto Federal de Ciência e Tecnologia - IFPB, João Pessoa, PB, Brasil
[2] Universidade Federal de Campina Grande - UFCG, Campina Grande, PB, Brasil

Este trabalho trata do dimensionamento da estrutura bocal/difusor utilizando a simulação computacional com fronteira móvel. Esse tipo de simulação contempla toda estrutura da bomba, isto é, câmara de bombeamento, difusor e área de dispersão de fluxo, de modo a contabilizar o refluxo em função da estrutura, possibilitando um projeto mais realísticos da estrutura.

Modeling Contact Line Dynamics in Evaporating Menisci

J. Plawsky[1], A. Chatterjee[1], and P.C. Wayner Jr.[1]
[1]Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA

The Constrained Vapor Bubble is a fundamental fluid mechanics experiment that is scheduled to run aboard the International Space Station starting in August 2009. The experiment is focused on looking at evaporation and condensation processes at the contact line, where vapor, liquid and solid meet. Our goal is to understand how processes that occur on the macroscale affect the transport processes ...

Deep Desulfurization of Diesel Using a Single-Phase Micro-Reactor

G. Jovonavic[1], J. Jones[1], and A. Yokochi[1]
[1]School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA

This paper describes the benefits of computational fluid dynamics in the development of a microreactor used in the desulfurization of aromatic compounds. It is crucial to verify diffusion and extinction coefficients to ensure accurate simulation results prior to experiments. COMSOL Multiphysics was used to model the behavior of all of the possible species present and reactions that may occur.