Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Change in the Flow Rate Through a Deformed Valve

D. Kekejian[1], Y. Martinez[1]
[1]ITESO, Tlaquepaque, Jalisco, Mexico

In this work, a new design is suggested which functions both as a pipe for fluid transfer and as a valve which decreases the flow of the fluid in the opposite direction in case there are pressure fluctuations in the pipe. Therefore, we call it a "Deformed Valve". To design the structure, we had to use different geometric shapes and calculate the velocity of the fluid for each shape to determine ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...

CBM Extraction System Simulation Research

X. Mingjing [1]
[1] China University of Mining and Technology, Xuzhou, Jiangsu, China

Coal mines in many countries which rely heavily on fossil energy have huge CBM, coal bed methane, reserves. Meanwhile, methane extraction efficiency of low permeability coal seam is very low. It causes seriously waste of low-carbon energy source. For the sake of enhancing the efficiency of CBM extraction system and decreasing energy consumption of electrical equipment of CBM extraction system, a ...

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Numerical Simulation of Exact Two-Dimensional Governing Equations for Internal Condensing Flows

S. Mitra, R. Naik, and A. Narain
Michigan Technological University, Houghton, MI, USA

The paper outlines a two-dimensional computational methodology and presents results for laminar/laminar condensing flows inside mm- scale ducts. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady and unsteady flows. The results obtained are shown to be in agreement with an independently developed quasi-one ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Modeling of the Reduction Stage during the Continuous Refining of Copper in a Packed Bed Reactor

F. Mansilla[1], L. Voisin [2]
[1]Advanced Mining Technology Center, Chile University, Santiago, Chile
[2]Department of Mining Engineering, Advanced Mining Technology Center, Chile University, Santiago, Chile

Throughout history, the copper pyrometallurgical processes have been carried out mostly in discontinuous or batch systems. In recent decades new continuous technologies have been developed but focused only on Smelting and Converting stages leaving aside the Refining one. In 2002 a novel technology was proposed by the Department of Mining Engineering of Chile University which consists in two ...

Optimization of Around-The-End Hydraulic Mixer Using COMSOL Multiphysics®

S. Mohammadighavam[1], B. Kløve[1]
[1]University of Oulu, Department of Process and Environmental Engineering ,Oulu, Finland

After rapid mixing of waste water and coagulant, an effective slow mixing during a reasonable retention time will cause to grow the size of flocs up which will settle out easily. Around-the-end hydraulic mixer with barriers is one of the efficient facilities that have been used in water treatment plants for this purpose. A uniform velocity gradient (G) is needed to achieve efficient mixing and ...