Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Annealing Furnaces Modelisation for Photovoltaïc Applications

J. Givernaud[1]
[1]EMIX, St Maurice La Souterraine, France

The optimisation of dimensions, materials choice of heaters in annealing furnaces are done with COMSOL Multiphysics® in 2D-axisymetry. Heat losses sources are identified and corrective actions can be taken in function of simulation results. A power saving of more than 50% is achieved thanks to simulations.

Modeling of Expanding Metal Foams - new

B. Chinè[1,2], M. Monno[3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications. They are characterized by a cellular structure represented by a metal or metal alloy and gas voids inside (Fig.1). A common metallic cellular material is aluminum foam which can be produced metallurgically by heating a precursor, made of aluminum alloy and TiH2 as foaming agent, in a furnace. In this case, the foaming ...

Prediction of Air Permeability Using a Finite Element Method - new

A. Pezzin[1], A. Ferri[1]
[1]Politecnico di Torino, Torino, Italy

Air permeability is one of the most important parameters in the study of thermo-physiological comfort of fabrics. The main goal of this work is to develop a virtual process that allows the prediction of air permeability of any fabric without realizing a sample. The Free and Porous Media Flow physics interface was used in COMSOL Multiphysics® software; this allows to use Navier-Stokes equation ...

COMSOL Multiphysics® Simulation of the Electrokinetic Effect in Gidrogeology

M. A. Narbut [1], K. V. Titov [1], P. K. Konosavsky [1],
[1] Saint Petersburg State University, Saint Petersburg, Russia

The groundwater flow is accompanied by the electric field with potential called usually the streaming potential or the Self-Potential (SP) to be measured on the ground surface (e.g., Rizzo et al., 2004; Bolève et al., 2007; Jardani et al., 2009). We studied numerically the SP signals associated with pumping test experiments in layered aquifers using COMSOL Multiphysics® software and GWFGEM ...

Boundary conditions in multiphase, porous media, transport models of thermal processes with rapid evaporation

A. Datta[1], and A. Halder[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA

In modeling of thermal processing of biological materials with rapid evaporation, it is critical to provide boundary conditions consistent with the phenomena happening at the surface to accurately predict spatial temperature and moisture content for quality and safety assurance. Boundary conditions in a mathematical model are as important as governing equations itself and describe how the heat ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Gravitational Collapse of Rectangular Granular Piles

M.H. Babaei[1], T. Dabros[2], S.B. Savage[3]
[1]Ocean, Coastal, and River Engineering, National Research Council of Canada, Ottawa, ON, Canada
[2]Natural Resources Canada, CanmetENERGY, Devon, AB, Canada
[3]Department of Civil Engineering & Applied Mechanics, McGill University, Montreal, QC, Canada

In this study, the dam-break type two-dimensional gravitational collapse of rectangular granular piles in air was numerically studied. The frictional behavior of the material was based on the von-Mises model with the Mohr-Coulomb yield surface leading to pressure and strain-rate-dependence of shear viscosity. The governing equations of the problem were solved using the COMSOL two-phase flow CFD ...

Enhanced Transient Modeling of Hybrid Photovoltaic Air (PVT) Module - new

R. Kiflemariam[1], M. Almaz[1], F. Zevallos[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 2D transient heat conduction model was created in COMSOL Multiphysics® software to study the performance of photovoltaic-thermal (PVT) water system. The model captures the variation of important environmental and system parameters such as outside temperature, solar irradiation, air velocity and temperature. The model has a good agreement with experimental data for the photovoltaic cell ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...