Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Humidity Mass Transfer Analysis in Packed Powder Detergents

F. Zonfrilli[1], V. Guida[1], L. Scelsi[1]
[1]Procter & Gamble Italia, Pomezia, Roma, Italy

Powder detergents containing sodium percarbonate and bleach activators undergo chemical decomposition when exposed to high relative humidity. Controlling the moisture intake in finished product packs is therefore a fundamental need in order to guarantee product stability during the whole supply chain. In this paper we show how we have leveraged COMSOL Multiphysics capability in order to model ...

Multiphysics Simulations of Granular Sludge on the Optimization of Effluent Treatment Plant

S. Gunsekaran [1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Bangalore, India

Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the secondary settler of an Effluent Treatment Plant (ETP) is critical for the plant designers to determine the efficiency ...

Simulation of the Plasma Generated in a Gas Bubble

L. Z. Tong[1]
[1]Keisoku Engineering System Co., Ltd., Tokyo, Japan

The plasmas generated in water involve various physical phenomena such as flows agitated by bubbles, high electric fields for breakdown, discharges in bubbles with size variation, and so on. In this paper, studies have been made on the simulation of plasmas generated in bubbles with size variation. The species taken in account include electrons, three kinds of ions, and ten kinds of neutral ...

The Effect of Electrolyte Flow Slots in Tooling Electrodes on Workpiece Surface Finish in Electrochemical Machining

B. Bingham[1]
[1]Oregon State University, Corvallis, OR, USA

Electrochemical machining (ECM) uses electrolysis to precisely remove material at high rates. ECM has many advantages over conventional machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually independent of material hardness or strength, and excellent surface finishes. However, challenges can arise during the design of the tooling electrode when ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

Numerical Modeling of the Original and Advanced TEMKIN Reactor for Catalysis Experiments in Laboratory Scale - new

D. Götz[1], M. Kuhn[1], P. Claus[1]
[1]Ernst-Berl-Institute/Chemical Technology II, Darmstadt, Germany

Many industrial, especially heterogeneously catalysed, processes are characterised by a strong interaction between the reaction kinetics and transport phenomena. Because experiments in laboratory scale can be very time- and cost-intensive, Temkin and Kul’kova developed a new reactor design for the direct testing of industrial catalysts. Based on this concept of linearly alternating catalyst and ...

Numerical Study of Smoldering Combustion of Activated Carbon in Ⅱ Iodine Absorber - new

T. Liang[1], M. Liu[1], X. Liu[1], Z. Meng[1]
[1]Safety Engineering, Zheng Zhou University, Zheng Zhou, Henan, China

Iodine absorber is a widely used purification equipment for purifying air in a nuclear power plant. In China, the common type is Ⅱ iodine absorber. Impregnated activated carbon is the main absorber within the iodine absorber. Because of the decays exothermic of radioactive iodine, heat is generated in the adsorption process. Carbon is a combustible material. Moreover, air is always supplied in ...

Modeling and Simulation of Drug Release through Polymer Matrices - new

V. Runkana[1], A. Pareek[1], P. Arora[2]
[1]Tata Consultancy Services, Pune, Maharashtra, India
[2]Indian Institute of Technology Delhi, New Delhi, Delhi, India

Limited drug efficacy, undesirable temporal changes in drug concentration and patient non-compliance due to frequent dosing schedule have given impetus to design of controlled drug release systems [1]. Biodegradable polymers due to their favorable and tunable properties and biocompatibility have found widespread use in the field of controlled drug delivery [2]. Exploratory in vitro experiments ...

Dynamic Simulation of Interface Shapes During Chemical Vapor Deposition

J. V. Jayaramakrishna[1], S. K. Thamida[1]
[1]National Institute of Technology Warangal, Warangal, Telangana, India

Chemical Vapor Deposition (CVD) finds application in many manufacturing processes of microelectronic devices and MEMS as a recent development. It is also useful for preparation of functionalized surfaces in microsensor kind of devices. The phenomena that is studied is deposition of a crystalline material for example Silicon from the gas phase substance such as Silicon Hydride (SiH4). The ...

Microscale Simulations of Catalyst Deactivation During Gas-Phase Upgrading of Biomass Pyrolysis Vapors

P. N. Ciesielski [1], D. Robichaud [2], B. Donohoe [1], M. Nimlos [2],
[1] Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
[2] National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA

Catalytic fast pyrolysis is a process by which biomass may be converted into liquid hydrocarbon transportation fuels and chemical co-products that are alternative to their petroleum-derived counterparts. Chemical compounds in raw pyrolysis vapor have high oxygen content and therefore must be deoxygenated in order to meet specifications for hydrocarbon fuels. One strategy to accomplish this is ...