Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Mathematical Modeling of Atheroma Plaque Deformation using COMSOL Multiphysics

N. El Khatib1, S. Genieys1, M. Zine2, and V. Volpert1
1Institut Camille Jordan, Université Claude Bernard, Lyon, France
2Département Maths & Informatique, Ecole Centrale de Lyon, Lyon, France

The development of atherosclerosis leads to the formation of an atheroma plaque which takes place in the artery. This plaque is composed of two parts: a lipid deposit and a fibrous cap. The fibrous cap covers the lipid deposit and isolates it from the blood flow. The blood flow that circulates in the artery modifies the geometry of the atheroma plaque and can cause dangerous effects, such as a ...

Image Based-Mesh Generation for Realistic Simulation of theTranscranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2], M. Elwassif[2] , and M. Bikson[2]
[1] Simpleware Ltd, Exeter, Devon, UK
[2] Department of Biomedical Eng., The City College of New York, New York, NY, USA

This paper will discuss the comprehensive solution adopted for converting the 3D digital/medical images directly into the computational model. The workflow using Simpleware Software – ScanIP and + ScanFE – will be illustrated including the option for directly exporting fully compatible models to COMSOL Multiphysics. The extra functionality that allows introduction, positioning and ...

Physical and FEM Simulation of Microprobe Insertion into Brain Tissue

A. Eed Olamat, U. Hofmann, B. Pohl, and N. Nkemasong
University of Lübeck, Institute for Signal Processing, Lübeck, Germany

In order to investigate the implantation of microprobes into brain tissue, we developed a finite-element and a physical model to replace real biological tissue for mechanical testing. Penetrating forces of a tungsten indenter into a layered structure was investigated with different indentation speeds. Numerical and physical model are in good correspondence to each other and reproduce measured ...

The Effect of Cartilaginous Rings on Deposition by Convection, Brownian Diffusion and Electrostatics

H. Akerstedt
Luleå University of Technology, Luleå, Sweden

This paper presents a numerical study of the deposition of spherical charged nanoparticles caused by convection and Brownian diffusion in a pipe with a cartilaginous ring structure. The model is supposed to describe deposition of charged particles in the upper generations of the tracheobronchial tree of the human lung. The upper airways are characterized by a certain wall structure called ...

Numerical Simulation of the Functional Electromagnetic Stimulation of the Human Femoral Bone using COMSOL

Y. Haba[1], W. Kröger[2], H. Ewald[2], R. Souffrant[1], W. Mittelmeier[1], and R. Bader[1]

[1]Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany

In the present study we determined the relative conductivities and permittivities of fresh cortical and cancellous bone measuring human femoral heads in different slices of 1 mm thickness. The identified conductivities of human trabecular bone are used for the electromagnetic field simulation by means of COMSOL using a Micro-Computed Tomography (Micro-CT) model. The calculated model depends on a ...

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By solving the model using COMSOL, it was possible to predict the concentration of bacteria at points within the ...

Search for a Suitable Numerical Model for Electrical Stimulation: from the Electric Double Layer to Electrokinetics, Confrontation with Impedance Measurements

P. Pham, R. Scapolan, C. Rubeck, and F. Dupont
CEA-LETI-MINATEC, Grenoble, France

Electrical Stimulation is widely used today for Deep Brain Stimulation treatments and retinal prostheses. The Electrical Double Layer formed at the interface between the electrode surface and the extracellular medium is considered thru the linear Helmholtz model and the nonlinear more realistic modified Poisson Boltzmann model. These different models, solved using COMSOL Multiphysics, are ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Simulation of Normal and Cancerous T-cell Membrane Electroporation

O. Henao[1], V. Gómez[1], I. De la Pava[1], J. Sánchez[1]
[1]Grupo Fisiología Celular y Aplicada, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

Electroporation is an increase of the cell membrane permeability due to the formation of aqueous pores in it when the cell is under the influence of an intense electric field [1][2]. The formation of such pores in the membrane can be used to enhance the uptake of chemotherapeutic drugs into the cell in a cancer treatment known as electrochemotherapy [3]. In some cases the direct experimental ...

3D-FEA of the Relationship between the Occiput and Sphenoid in the Osteopathic Paradigm

Y. Chiesa[1]
[1]Istituto Superiore di Osteopatia, Milan, Italy

The concept of cranial Primary Respiratory Mechanism (MRP) is used by osteopathic practitioners to explain the perceptual characteristics arising from the clinical palpation approach of the human skull. The theoretical apparatus and the same MRP existence is always element of controversy among the scientific community. The results arising from this study highlight the intrinsic capability of the ...

Quick Search