Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Using COMSOL Multiphysics for Modeling of Musculoskeletal Biomechanics

R. L. Spilker
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, New York, USA

In this presentation, we study the modeling of physiology and muscoskeletal biomechanics using COMSOL. The outline for the presentation is in particular: Why is COMSOL particularly powerful for modeling physiology? Modeling soft tissues like cartilage Optimization to determine soft tissue properties Modeling of moving loads in the TMJ Robust 3D models from imaging data Model of primary ...

Nusselt, Rayleigh, Grashof, and Prandtl: Direct Calculation of a User-Defined Convective Heat Flux

J. F. Hansen [1],
[1] Thoratec Corporation, CA, USA

When an electronic device is worn for extended periods, possibly in direct contact with human skin, heat must be safely transferred away from the device, without exceeding standards and regulatory temperature limits on the skin and on the exposed surfaces of the device. Heat transfer is dominated by convective heat transfer to the surrounding air (possibly trapped air under clothing), and by ...

Simulation and Experimental Characterizations of a Thin Touch Mode Capacitive Pressure Sensor

A.-M. El Guamra [1], D. Bühlmann [1], F. Moreillon [1], L. Vansteenkiste [1], P. Büchler [2], A. Stahel [3], P. Passeraub [1],
[1] HES-SO University of Applied Sciences Western Switzerland, Delémont, Switzerland
[2] Institute for Surgical Technology & Biomechanics, University of Bern, Bern, Switzerland
[3] Bern University of Applied Sciences Engineering and Information Technology, Bern, Switzerland

Introduction: This study describes a thin and low-cost capacitive pressure sensor in touch mode (TM) for monitoring fluid pressure from 0 to 40kPa in fluidic chambers with Luer fittings for medical applications. TM provides good linearity, large measuring range and large overload protection [1]. The choice of a thin polymer membrane as sensitive element with printed circular electrodes reduces ...

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

L. C. Zaragoza[1], B. Hondorp[2], M. A. Rossi[3]
[1]ITESM, Monterrey, Mexico
[2]Rush Medical College, Chicago, IL, USA
[3]Rush University Medical Center, Chicago, IL, USA

The goal of our work was to calculate a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element method (FEM) models derived from SPGR magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), ...

Optimization of MEMS Based Capacitive Accelerometer for Fully Implantable Hearing Aid Application

A. Dwivedi [1], G. Khanna [1],
[1] NIT Hamirpur, Hamirpur, Himachal Pradesh, India

This work describes the design and optimization of three prototypes of microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. The analysis is done using COMSOL Multiphysics®. The maximum applied acceleration was considered 1g. Human temporal bones ...

Ultrasensitive Mass Sensing Through Coupled Microelectromechanical Resonator Arrays

A. R. Hambarde [1], R. M. Patrikar [1],
[1] Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Microelectromechanical coupled resonating arrays are being used for detecting biological and chemical analytes through mass sensing. Such arrays of perfectly identical resonators can be considered as periodic, ordered, non-localized systems. The change in the eigen parameters of the system upon mass or stiffness perturbation is a measure of the amount of perturbation. An attempt has been made in ...

CMUT Based Free Membrane Intra-Cardiac Volumetric Blood Flow-Meter

P. Priya [1], B. D. Pant [2],
[1] Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
[2] CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India

In this paper, a free membrane is used as a receiver to increase the capacitance and therefore the resolution of the flow meter. For the current application, from the wavelength of sound wave in soft tissue (c= 1540 m/s) the resolution was calculated to be 0.48 mm. This gives the first Eigen frequency of the capacitive structure according to which the poly silicon membrane was designed. After ...

Modeling Deep-Bed Grain Drying Using COMSOL Multiphysics®

J.G. Pieters[1], R. ElGamal[1], F. Ronsse[1]
[1]Faculty of Bioscience Engineering, Department of Biosystems Engineering, Ghent, Belgium

CFD simulations were carried out to predict the convective heat and mass transfer coefficients in the rice bed, and correlations were developed for the convective heat and mass transfer coefficients as a function of drying air flow rate. The developed correlations were used to extend the model developed by ElGamal et al. (2013) for thin-layer rice drying to volumetric heat and mass transfer in a ...

Design and Simulation of a Microscale Magnetophoretic Device for the Separation of Nucleated Fetal Red Blood Cells from Maternal Blood

G. Schiavone[1], D.M. Kavanagh[2], and M.P.Y Desmulliez[2]

[1]Politecnico di Torino, Torino, Italy
[2]MIcroSystems Engineering Centre, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, United Kingdom

Intense research has been carried out into methods that aim at harvesting fetal cells from maternal blood as substitutes to amniocentesis and chorionic villus sampling. This work focuses on the separation of fetal nucleated red blood cells from the maternal circulation based on their intrinsic magnetic properties. The design and simulation of a magnetophoretic separator is described, as it will ...

Heat Transfer and Phase Transformation on Matrix Assisted Pulsed Laser Evaporation (MAPLE) of Biocompatible Thin Layers

E. Lacatus[1], G.C. Alecu[1], M.A. Sopronyi[2], A. Tudor[1]
[1]POLITEHNICA University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique is used for the deposition of high quality biocompatible polymer thin films. During the deposition process the temperature of the laser target should be kept below 193K to assure the proper quality of both evaporation and deposition phases of the process. On a first approach COMSOL Multiphysics® was used to describe and analyze the ...