Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Analysis Of Particle Trajectories For Magnetic Drug Targeting

A. Heidsieck, and B. Gleich
Zentralinstitut für Medizintechnik, TU München, München, Germany

The technique of magnetic drug targeting binds genetic material or drugs to superparamagnetic nanoparticles and accumulates them via an external magnetic field in a target region. However, it is still a challenge for this approach to succeed in areas with high flow rates, like the aorta or the heart ventricle. The magnetic field sources have to be accurately optimized and adapted to the local ...

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Analysis of 3D Biocompatible Additive Structure Using COMSOL Multiphysics® Software - new

E. Lacatus[1], M. A. Sopronyi[2], G. C. Alecu[1], A. Tudor[1]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

For biocompatible prosthetics, from dental implants up to bone parts, manufacturers have to find the best way to correlate process parameters and the material properties as to meet the unique needs of individuals. Additive manufacturing techniques aim at creating complex biocompatible structures able to overcome the present shortfalls of the metal and metal alloys implants related to ...

Assessment of Diffuse Optical Tomography Image Reconstruction Methods Using a Photon Transport Model

M. M. Althobaiti [1], H. S. Salehi [2], Q. Zhu [2],
[1] Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
[2] Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA

Imaging of tissue with near-infrared diffuse optical tomography is emerging as a practical method to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. The accurate recovery of images by using numerical modeling requires an effective image reconstruction method. We illustrate a comparison between two widely used reconstruction methods using finite element ...

Modeling Deep-Bed Grain Drying Using COMSOL Multiphysics®

J.G. Pieters[1], R. ElGamal[1], F. Ronsse[1]
[1]Faculty of Bioscience Engineering, Department of Biosystems Engineering, Ghent, Belgium

CFD simulations were carried out to predict the convective heat and mass transfer coefficients in the rice bed, and correlations were developed for the convective heat and mass transfer coefficients as a function of drying air flow rate. The developed correlations were used to extend the model developed by ElGamal et al. (2013) for thin-layer rice drying to volumetric heat and mass transfer in a ...

Modeling Light Propagation in Skin for Visualization of Subcutaneous Veins

H. Kwon[1], R. Huancaya[1]
[1]Andrews University, Berrien Springs, MI, USA

Vein visualization systems such as the VeinViewer are vein-contrast enhancement devices that use an infrared camera to highlight blood or the underlying vasculature and project the image in real time onto the skin. Understanding the light propagation in a realistic skin model is critical, but only a few computational models have been developed to account for this particular system. We have ...

Pushability Model of a Microcatheter for Intravascular Procedures

M. Miliani[1], F. Piccagli[1]
[1]Medtronic Invatec S.p.A., Roncadelle, BS, Italy

During peripheral intravascular interventions one of the main issues is the correct deployment of the guidewire (GW) to the anatomical site which has to be treated, often supported by a microcatheter. There is a trade-off between the microcatheter flexibility and its push-ability to be able to reach the anatomical site. The catheter design has been defined with 2 transition zones. A parametric ...

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Y. Sheng, and L. Yu
University Laval
Quebec City, QC
Canada

A biconcave-shaped Red Blood Cell was trapped and deformed in a dual-trap optical tweezers. The two highly focused trapping beams of Gaussian intensity distribution were modeled as background field in the COMSOL Radio Frequency Module. The 3D radiation stress distribution on the cell surface was computed via the Maxwell stress tensor. The 3D deformation of the cell was computed with the ...

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Electrical Characterization of Biological Cells on Porous Substrate Using COMSOL Multiphysics®

D. Mondal[1], C. RoyChaudhuri[1]
[1]Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah, West Bengal, India

In this paper, the gross electrical characterization of biological cells on porous substrate is analyzed using COMSOL Multiphysics®. Dynamic electrical characterization during cell growth is used as a non-invasive and label-free technique to understand the growth kinetics of cells. It is observed from the COMSOL simulation that the percentage change in the current density is greater in porous ...