Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode ...

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. The model is applied in two regimes of the process – pore formation and electropolishing – by definition of current density dependent functions of porosity and dissolution valence based on experimental results. As found also experimentally, ...

Modeling of Ammonia-fed Solid Oxide Cells in COMSOL Multiphysics®

D. Cheddie[1]
[1]University of Trinidad and Tobago, Couva, Trinidad and Tobago

This paper presents a 2D model of an intermediate temperature ammonia-fed SOFC (400 – 700 °C) based on the Temkin-Pyzhev model of ammonia decomposition. Phenomenological equations are implemented in COMSOL Multiphysics®. The Dusty Gas Model is used to model species transport in porous media, but a modification of Fick’s Law is used. Results show that intermediate temperatures can alleviate ...

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method - new

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization systems, and for micro-sensing devices. For thermal properties investigation many experimental systems were ...

Large and High Power Cylindrical Batteries - Analysis of the Battery Pack Temperature Distributions Using the COMSOL Multiphysics® and MATLAB® Simulation Softwares - new

O. Capron[1], A. Samba[1], N. Omar[1], H. Gualous[2], P. Van den Bossche[1], J. Van Mierlo[1]
[1]MOBI - Mobility, Logistics and Automotive Technology Research Centre, VUB - Vrije Universiteit Brussel, Brussels, Belgium
[2]Laboratoire LUSAC, Université de Caen Basse Normandie, Cherbourg-Octeville, France

The temperature distributions inside two packs (in-line and staggered) made of large cylindrical lithium iron phosphate cells (of 18 Ah nominal capacity) are analysed in this paper during a 90 A constant discharge current. The analysis of the battery packs temperature distributions is based on the results obtained with a two-dimensional modelling approach. For both packs, the simulations ...

Copper Electroplating Parameters Optimization

L. M. A. Ferreira [1],
[1] CERN , Geneva, Switzerland

Aqueous based copper electroplating seems the most reliable, flexible, cost effective method to create a copper layer on stainless steel coupler devices; this however, doesn’t imply a straightforward application, as subcomponents geometry is complex and tolerances are tight. At CERN, two existing copper electroplating baths were tested to evaluate the feasibility of plating three couplers ...