Artigos Técnicos e Apresentações

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Verification and Time Performance Analysis of COMSOL v3.5a for Solving the Electromagnetic Problem in a Superconductor Slab

J. Lloberas[1], J. López[1], E. Bartolomé[2], and X. Granados[3]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Escola Universitària Salesiana de Sarrià, Barcelona, Spain
[3]Institut de Ciència de Materials de Barcelona, Barcelona, Spain

Numerical analysis based on finite element method (FEM) represents a powerful approach to solve electromagnetic problems. For instance, FEM methods have been broadly used to calculate the critical state current distribution in high temperature superconductors of various geometries. In the near future, we intend to develop a tool in COMSOL v3.5a for the analysis of power applications, such as ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Designing Magnetic Coils from the Inside Out

C. Crawford, and D. Wagner
University of Kentucky
Lexington, KY

Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor and magnetic material configuration, using finite element analysis (FEA) software to calculate the resulting field, modifying the configuration, and iterating to produce the desired results. We take the opposite approach of specifying the required magnetic field, imposing it as a boundary condition on ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic precipitators ...

Modeling Ferrofluid Flow in an Annular Gap Moving with Reciprocating Shaft

Y. He[1], R. Nilssen[1]
[1]Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Ferrofluids have been successfully used in the seals for rotary shafts, but few studies focus on the reciprocating motion seals. Since the completely different operational regimes, previous experiences on the rotary motions could not be directly applied on the cases for reciprocating shafts. In this study, we present a simplified model to describe the process that a shaft linearly moving in a ...

Optimization of a Rotor Shape for Spherical Actuator with Magnetically Levitating Rotor to Match Octupole Field Distribution

M. Sidz[1], R. Wawrzaszek[1], L. Rossini[2], A. Boletis[3], S. Mingard[3], K. Seweryn[1], E. Onillon[2], M. Strumik[1]
[1]Space Research Centre of PAS, Warsaw, Poland
[2]CSEM Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland
[3]Maxon Motor AG, Sachseln, Switzerland

The use of a reaction sphere as an actuator used by satellite Attitude Control System was proposed over twenty years ago. In principle this concept assumes the use of a single reaction sphere which can be accelerated in any direction instead of a set of reaction wheels. The solution discussed in this work has been proposed and patented by CSEM company. Contrary to conventional ball bearing ...

The Effect of Space Charge due to the Auto-Ionization of Neutral, Hydrogenic States in Point-Contact Germanium Detectors at MilliKelvin Temperatures - new

D. Faiez[1], N. Mirabolfathi[1], B. Sadoulet[1], K. M. Sundqvist[2]
[1]Department of Physics, University of California - Berkeley, Berkeley, CA, USA
[2]Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA

A class of semiconducting detectors, operated at temperature T~50mK, has direct application to the search for dark matter particle, when are able to simultaneously measure both the ionization and phonons created by particle interactions. We explore the effect of space charge accumulation in a germanium p-type point contact detector which arises due to the auto-ionization of hydrogenic ...

Design of Three Phase Homopolar Synchrone Reluctance Machine with Double Statoric Winding and Double Massive Rotor

C. Belalahy, I. Rasoanarivo, S. Rael, and F. M. Sargos
GREEN Institut National Polytechnique de Lorraine, Vandoeuvre lès Nancy, France

This paper deals with the design of a three phase synchronous reluctance machine constituted by two stators and two massive rotors. A coil is placed in the stator, between the two salient poles of the rotor. These poles can have parallel or perpendicular axes. Such structures allow the rotor to work as an inertial load and provide high dynamic performances with regards to energy conversion, a ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to measure ...

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. Development of an electrorefining cell, in which processing of 10 kg of simulated spent fuel will be demonstrated, is ...

Quick Search