Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Electric Field Calculations for AC and DC Applications of Water Controlled Cable Termination - new

T. Karmokar[1], R. Pietsch[1]
[1]HIGHVOLT Prüftechnik Dresden GmbH, Dresden, Sachsen, Germany

The computation of electric field strength is the state-of-the-art technique for designing and optimizing High-Voltage (HV) equipment. In this research, the equipment under analysis is Cable Termination (CaTr) which is used to apply high-voltage (75 kV – 800 kV AC) on the cable to be tested (Figure 1). The CaTr is based on the principle of linear electric field control using deionised water with ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...

A 2D Model of a DC Plasma Torch

B. Chine' [1],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Plasma torches are used in processing of materials as well as in the energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be initiated by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the plasma is obtained by heating, ionizing and expanding a working gas, introduced into the chamber of the torch ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Modeling a Brushless DC Motor for an Advanced Actuation System using COMSOL Multiphysics® Software

K. S. Shinoy [1], B. Sebastian [1],
[1] Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, India.

This paper presents the design and analysis of a high power radial flux Brushless DC motor for electro-mechanical actuation system. The motor is used for driving an electro-mechanical actuator of 20 ton capacity. Surface mounted, radially magnetized permanent magnet design is mostly preferred due to its ease of control, high efficiency and low maintenance. The motor under consideration is having ...

3D Acoustic Streaming Field in High-Intensity Discharge Lamps - new

B. Baumann[1], J. Schwieger[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge lamps will in the foreseeable future be important light sources despite a growing market share of LEDs. Cost and energy efficient high frequency (300 kHz) operation is hampered by the excitation of acoustic resonances inside the arc tube, which results in low frequency (10 Hz) light flicker. Our aim is to calculate the acoustic streaming velocity field, which is related ...

The Simulation of Electric Field Distribution in Electrospinning Process - new

Y. Zheng[1], B. Xin[2]
[1]Donghua University, Shanghai, China
[2]Shanghai University of Engineering Science, Shanghai, China

The electric field plays a very important role in the electrospinning process, which needs to be seriously considered in the electrospinning configuration developing. High voltage involved in electrospinning process leads to difficulty in measuring the electric field. Numerical simulation is used to design the electric field, and experiments are carried out to validate the spinneret and ...

Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL Multiphysics®

M. Madsen[1], J. Mønster[1], A. Knott[1], M. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper describes the implementation of a complete design tool for design, analysis, optimization and production of PCB embedded inductors. The paper shows how LiveLink™ for MATLAB® and COMSOL Multiphysics® make it possible to combine the scripting and calculation power of MATLAB with the simulation power of COMSOL Multiphysics in order to get an extremely efficient tool for inductor design. ...

Simulation of Electro-Thermal Transients in Superconducting Accelerator Magnets

L. Bortot [1], M. Maciejewski [2], M. Prioli [1], B. Auchmann [3],
[1] CERN, Geneva, Switzerland
[2] CERN, Geneva, Switzerland; Lodz University of Technology, Lodz, Poland
[3] CERN, Geneva, Switzerland; Paul Scherrer Institute, Zurich, Switzerland

The paper presents the application of COMSOL Multiphysics® software to the modelling of superconducting accelerator magnets. A 2D magneto-thermal model is developed, using an equivalent magnetization formulation to take into account the eddy-currents’ effects. Due to the model complexity, a suitable workflow has been developed in Java® to extensively use the available COMSOL API. The automation ...

Extraction of 13.56 MHz NFC-Reader Antenna Parameters for Matching Circuit Design

Prof. Dr.-Ing. habil. A. K. Palit [1],
[1] ZF-Lemfoerder Electronic GmbH, ZF-Friedrichshafen AG. Group, Espelkamp, Germany

Introduction: RFID system uses a Transponder and the near field communication (NFC) antenna and a matching circuit (Figure-1) in which at least latter two must be optimally designed for a higher efficiency. Typically, RFID antennas are flat inductive coils with 2 to 4 turns and are printed directly on the PCB. The larger antenna size implies larger operating distance whereas, the number of ...