Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

A Numerical Comparison of Dielectric based Measurement of Atmospheric Ice Using COMSOL

U. N. Mughal[1], M. S. Virk[1]
[1]Narvik University College, Narvik, Norway

Atmospheric ice is a very complex material with varying electrical properties due to different polymorphs of ice itself. Also, if the medium to be considered is snow, then density becomes an additional parameter because it is a mixture of three dielectrics water, ice and air. The permittivity and loss tangent of naturally occurring ice and snow shows lot of variation at different conditions ...

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Dynamics of a Sessile Droplet Evaporation

G. Marinaro[1], A. Accardo[1], E. Di Fabrizio[1]
[1]Istituto Italiano di Tecnologia, Nanostructures Department, Genova, Italy

Evaporation of sessile droplets is associated with simple phenomena such as the ring-like spot left by a drying coffee droplet. Evaporation rate plays an important role on the convective motion inside the droplet. These fluxes are for example one of the factors responsible for amyloid fibrillation of proteins, a mechanism present in neurodegenerative diseases such as Alzheimer. In our ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Comparison Between Turbulent and Laminar Bubbly-Flow for Modeling H2/H2O Separation

E. Amores Vera[1], J. Rodríguez Ruiz[1]
[1]Centro Nacional del Hidrógeno, Puertollano, Spain

One of the most critical aspects on water electrolysis is gas-liquid separation, especially in systems with forced convection. The main problem of this kind of circulation is that a gas fraction could return to the electrolysis circuit. A suitable design of separator devices could be a solution in order to avoid a gas return to the electrolysis circuit. In this sense, the use of deflectors might ...

Multiphysics Modeling of Warm-Air Drying of Potatoes Slices

S. Sandoval Torres[1], A. de Lourdes Allier González[1], L.L. Méndez Lagunas[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

In this work we solve a model to simulate the drying of potatoes slices. The model considers both the transport of free and vapor water by applying a mechanistic approach. The critical moisture point (CMP) was considered, since it is a transition zone and it represents the point where water saturation is near from cero and hygroscopic domain begins. The CMP divides the hygroscopic and non ...

Microscale Simulation of Nanoparticles Transport in Porous Media for Groundwater Remediation

F. Messina[1], M. Icardi[1], D. Machisio[2], R. Sethi[1]
[1]Politecnico di Torino - DIATI, Torino, Italy
[2]Politecnico di Torino - DISAT, Torino, Italy

Nanoscale zerovalent iron is a promising reagent for the remediation of contaminated groundwater. The aim of the study is to simulate the transport of iron nanoparticles and their interaction with the porous media, their attachment and deposition on the soil grains. The particles trajectories is determined by several forces, some of them are significance only close to grains surfaces where, ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...

Solving a Two-Scale Model for Vacuum Drying by Using COMSOL Multiphysics

S. Sandoval Torres[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is solved to simulate vacuum drying of oakwood. A two scale model describes the physics of wood-water relations ...