Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Surface Plasmon Resonance

J. Crompton[1], S. Yushanov[1], L.T. Gritter[1], K.C. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The resonance conditions for surface plasmons are influenced by the type and amount of material on a surface. Full insight into surface plasmon resonance requires quantum mechanics considerations. However, it can be also described in terms of classical electromagnetic theory by considering electromagnetic wave reflection, transmission, and absorption for the multi-layer medium. The two commonly ...

Simulation of Acoustic Energy Harvesting Using Piezoelectric Plates in a Quarter-Wavelength Straight-Tube Resonator

B. Li[1], J.H. You[1]
[1]Southern Methodist University, Dallas, TX, USA

An acoustic energy harvesting mechanism at low frequency (~200 Hz) using lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside a quarter-wavelength straight-tube resonator has been studied using COMSOL Multiphysics 4.3 and compared with experimental data. When the tube resonator is excited by an incident wave at its acoustic eigenfrequency, an amplified acoustic resonant ...

Load Cell Design Using COMSOL Multiphysics

A. Marchidan[1], T. Sullivan[1], J. Palladino[1]
[1]Trinity College, Hartford, CT, USA

COMSOL Multiphysics was used to design a binocular load cell. A three-dimensional linear solid model of the load cell spring element was studied to quantify the high-strain regions under loading conditions. The load cell was fabricated from 6061 aluminum, and general purpose Constantin alloy strain gages were installed at the four high-strain regions of the spring element. The four gages were ...

Multiphysics Modelling of Standing Column Well and Implementation of Heat Pumps Off-Loading Sequence

A. Nguyen[1], P. Pasquier[1], D. Marcotte[1]
[1] Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby allowing the effect of the pumped water temperature on the capacity and coefficient of performance of the heat ...

COMSOL Thermal Model for a Heated Neural Micro-Probe

M. Christian[1], S. Firebaugh[1], A. Smith[1]
[1]United States Naval Academy, Annapolis, MD, USA

This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat equation with an external MATLAB function to determine the heat generation along the length of the probe. The ...

Poroelastic Models of Stress Diffusion and Fault Re-Activation in Underground Injection

R. Nopper[1], J. Clark[2], C. Miller[1]
[1]DuPont Company, Wilmington, DE, USA
[2]DuPont Company, Beaumont, TX, USA

Stress and failure in the earth have long been observed to couple to hydrogeology. Poroelastic models, introduced by soil scientists, can account for strong two-way coupling between porous crustal rock formations and their pore fluids. Current efforts to provide new energy resources (water injection in EGS, enhanced oil recovery) and to reduce pollution (CO2 sequestration, deepwell disposal) ...

Modeling a Combined Photovoltaic-Thermal Panel

E. Gutierrez-Miravete[1], B. Fontenault[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

A novel combined photovoltaic-thermal panel can simultaneously increase the conversion efficiency of the PV cell and utilize some of the excess thermal energy created by the conversion process (see Figure 1). The Conjugate Heat Transfer physics in COMSOL was used to create a two-dimensional, steady state model of such a combined photovoltaic cell-thermal panel. Figure 2 shows a magnified view of ...

Towards Rotordynamic Analysis with COMSOL Multiphysics

M. Karlsson[1]
[1]ÅF, Stockholm, Sweden

In this paper a pre-study on using COMSOL Multiphysics for rotordynamic analysis is presented. It is concluded that it is possible to use COMSOL Multiphysics to perform rotordynamical analysis. However, there are no standard environment for rotordynamics, hence the user has to extend the structural model with the rotordynamics effect such as gyroscopic effect and rotordynamical coefficients. By ...

Numerical Simulation of Phonon Dispersion Relations for Phononic Crystals

G. Zhu[1], E.M. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, MI, USA

In previous work, a two-dimensional (2D) model was carried out to simulate the phononic band structure of a phononic crystal with square lattice structure, but this model did not account for the out-of-plane phonon dispersions [1]. In fact, for 2D films used for coating materials, it is more interesting to understand their cross-plane properties. In this work, the phonon dispersion relation of ...

A COMSOL Model of Damage Evolution Due to High Energy Laser Irradiation of Partially Absorptive Materials

P. Joyce[1], J. Radice[1], A. Tresansky[1], J. Watkins[1]
[1]United States Naval Academy, Annapolis, MD, USA

In this paper we present a transient numerical model of the heat transfer and thermochemical damage evolution in an IR translucent material using COMSOL Multiphysics. The model is evaluated using literature supplied and experimentally determined material properties for carbon black laden PMMA (polymethyl-methacrylate). This variant of PMMA was chosen because it is homogeneous, isotropic, and the ...

First
Previous
1–10 of 143