Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Optimized Design of Shielded Microstrip Lines using Adaptive Finite Element Method

P. Kakria[1], A. Marwaha[1], and M. S. Manna[2]
[1]Electronics & Communication department, SLIET Longowal, Distt. Sangrur, Punjab, India.
[2]Electrical & Instrumentation department, SLIET Longowal, Distt. Sangrur, Punjab, India.

In this paper, the attempt has been made to design and analyze single strip shielded Microstrip line with capacitive coupling. The main objective is to compute the capacitance per unit length of shielded Microstrip line using Finite Element technique. The computational and simulation work has been carried out with the help of FEM based COMSOL Multiphysics software. The shielded Microstrip ...

Finite Element Modeling of Freezing of Coffee Solution

C. Anandharamakrishnan, R. Gopirajah, and N. Chhanwal
Central Food Technological Research Institute
Mysore
Karnataka, India

Freeze-drying is a popular method of producing shelf stable particulate products and is of particular value for drying thermally sensitive materials (volatiles and biological based), which can be heat damaged by higher temperature methods, such as spray-drying. Porous structures are formed by the creation of ice crystals during the freezing stage, which subsequently sublime during the drying ...

Design of a RF MEMS Switch

B. Mishra, M. P. S. Naidu, J. Raj, and Z. C. Alex
VIT University
Vellore
Tamilnadu, India

This paper presents a novel design of a RF MEMS Switch. The switch is a capacitive type, which is actuated by an electrostatic force. The structure of the switch consists of a CPW (coplanar waveguides) transmission lines and a suspended membrane. The modelling of switch is done using COMSOL software and RF characteristics is found out by using CST software.

Simulation of MEMS based Flexible Flow Sensor for Biomedical Application

D. Maji[1], C. P. Ravikumar[2], and S. Das[1]
[1]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
[2]Texas Instruments (India) Pvt. Ltd., Bangalore, India

Arterial disease, especially Coronary Artery Disease (CAD) is one of the leading causes of premature morbidity and mortality. During the flow, blood interacts with vessel wall mechanically and chemically which modulates the plaque formation in blood vessel leading to coronary artery diseases. Here we propose to simulate a MEMS based flexible flow sensor based on anemometer principle designed to ...

Heat Generation from Dielectric Loss, Internal Heat Generation and Vibration in COMSOL4.2 Multiphysics

T. R. Jeba, B. Vins, and V. Ramamoorthy
HCL Technologies

This paper presents a FEA approach to estimate temperature rise and thermal stress experienced in PZT/Solid structure due to internal heat generation and dynamic excitation. The power dissipative density consumed by structural damping of the mass structure, internal heat generation due to applied voltage and dielectric loss of the PZT material is first determined. The dissipative power is then ...

Design and Simulation of MEMS Based Electrothermal Micromirror for 3D Spatial Movement

D. Mallick, and A. Bhattacharyya
Institute of Radio Physics and Electronics
University of Calcutta
West Bengal, India

Micromirror is a versatile MEMS device, which finds use in many application areas. In this paper, we have addressed the issues related to the design and behavioral simulation of MEMS based electro-thermal micromirror [Figure 1] for 3D motion. Two types of thermal actuation mechanism are used in the designed device. For in-plane movement poly-silicon made two-hot-arm actuatoris used. Here, the ...

Current Density, Electric Field and AC Loss Simulation of Mono Block and Single Layer Polygonal HTS Cable Using COMSOL Multiphysics

G. Konar[2], R. K. Mandal[1], and N. Chakraborty[2]
[1]Electrical Engineering Department, Seacom Engineering College, Dhulagar,West Bengal, India
[2]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

High temperature super conducting (HTS) cables are gaining attentions for their ability to transmit more power compared to their convention counterparts with essentially no resistance and electromagnetic emissions. They are also appropriate for solving the grid congestion problem in the power corridors with their reduced size and weight. But the AC loss that occurs in the HTS cables reduces the ...

MEMS Electrostatic Comb Actuator: A Comparison of Different Structure Designs and Materials using COMSOL 3.5a

S. Kapoor[1], D. Aggarwal[2], and A. Gujjar[1]
[1]University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, Haryana, India.
[2]Electronics Science Department, University Institute of Engineering and Technology, Kurukshetra University, Haryana, India.

The micro machining technology that emerged in the late 1980’s can provide micron sized sensors and actuators. Actuators are used for the transformation of non- mechanical input energy into mechanical output energy. There are many types of micro- actuation mechanisms, most commonly used are piezoelectric, magnetic, thermal, SMA, electrochemical, electrostatic actuation. Electrostatic actuation ...

Analysis of Magnetic Resonance in Metamaterial Structure

C. Rajni[1], and A. Marwaha[2]
[1] Shaheed Bhagat Singh College of Engineering And Technology, Ferozepur, Punjab, India
[2] Sant Longowal Institute of Engineering And Technology, Sangrur, Punjab, India

‘Metamaterial’ is one of the most recent topic in several areas of science and technology due to its vast potential in various applications. These are artificially fabricated materials which exhibit negative permittivity and/or negative permeability. The unusual electromagnetic properties of metamaterial has opened more opportunities for better antenna design to surmount the limitations of ...

Experimental and Theoretical Investigation of Acoustic Metamaterial with Negative Bulk-Modulus

N. R. Mahesh, and P. Nair
SSN College of Engineering
Chennai
Tamil Nadu, India

Acoustic metamaterials are structured materials of negative mass density or negative bulk-modulus or both of them. Materials are tailored in sub-wavelength dimensions so as to get these negative properties. This paper compares the result of an experimental investigation of acoustic metamaterial with negative bulk-modulus to its COMSOL modeling. The resonance characteristics of single ...