Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Stefan's Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process

D. Groulx, and W. Ogoh
Dalhousie University, Halifax, NS, Canada

A 1D phase change problem, known as Stefan’s problem, for which analytical solutions are available, is solved as a 2D problem using COMSOL Multiphysics. The PCM medium is semi-infinite, initially solid at its melting temperature Tm, and at t = 0, the wall temperature is raised to Tw > Tm, prompting the PCM to start melting, from pure conduction, in a linear fashion starting at x = 0. The length ...

Failure Stress Analysis of Fiber Reinforced of Composite Laminates under Uniaxial/Biaxial Loading

Z. Hasan[1], F. Darwish[2], and S. Al-Absi[2]
[1]Texas A&M University, College Station, TX, USA
[2]Jordan University of Science and Technology, Irbid, Jordan

The main objective of the present work is to perform stress analysis on composite laminates under unaxial/biaxial loading to serve as a preliminary data for test verification. A detailed calculation based on the Classical Lamination Theory was performed for a laminate. The material used was carbon/epoxy applying a pure uniaxial load followed by a biaxial load. It was observed that the failure ...

COMSOL Multiphysics-Based Exploratory Insulin Secretion Model for Isolated Pancreatic Islets

P. Buchwald
University of Miami, Miami, FL, USA

Insulin released by the beta-cells of pancreatic islets is the main regulator of glucose homeostasis, hence, insulin secretion models are of considerable interest for many possible applications. Building on our previous oxygen consumption and cell viability model for avascular islets of Langerhans, we developed an exploratory insulin secretion model that couples the hormone production rate to ...

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality factor of axisymmetric resonators with high accuracy in COMSOL. We treated the perfectly matched layer as an ...

Simulations of Meniscus Motion and Evaporation for Convective Deposition Manufacturing

J. Xiao, and D. Attinger
Columbia University, New York, NY, USA

Convective deposition is a material processing technique where an evaporating meniscus of a colloidal suspension is dragged along a solid substrate to deposit layers of micro or nanoparticles. The process is a typical multiphysics process where fluid dynamics, mass and heat transfer come into play in a small deforming domain. In this work, we describe an Arbitrary Lagrangian-Euler model ...

COMSOL Assisted Simulation of Laser Engraving

H. Karbasi
Conestoga College, Kitchener, ON, Canada

The main purpose of this paper is to develop a proof of concept software that can simulate the geometry of engraved surfaces and can estimate the depth and width of engraved groove and associated laser parameters. For this purpose, COMSOL has been used to simulate the moving laser beam as a source of heat over physical domain made of different materials. Through interaction modeling of ...

Modeling Horizontal Ground Heat Exchangers in Geothermal Heat Pump Systems

A. Chiasson
University of Dayton, Dayton, OH, USA

Geothermal heat pumps use the earth as a heat source and sink via a ground heat exchanger (GHX) that consists of a network of buried heat exchange pipes, which can either be installed in vertical boreholes or in shallow horizontal trenches or excavations. The main goal in GHX design is to determine the minimum length of pipe needed to provide adequate fluid temperatures to heat pumps over their ...

Analysis of Lubricant Flow Through Reynolds Equation

K.C. Koppenhoefer[1], S.Y. Yushanov[1], L.T. Gritter[1], J.S. Crompton[1], and R.O. Edwards[2]
[1]AltaSim Technologies LLC, Columbus, OH, USA
[2]Cummins Fuel Systems, Columbus, IN, USA

Reynolds equation is used to analyze fluid flow through small gaps. As such, the solution of Reynolds equation provides critical information for a wide range of tribological problems. In any case where a lubricant resides between two moving surfaces, the Reynolds equation can be used to solve for the flow. In the case considered in this paper, lubricant flows between a piston and housing forced ...

Uncertainty Analysis, Verification and Validation of a Stress Concentration in a Cantilever Beam

S. Kargar, and D. Bardot
University of Alabama, Huntsville, AL, USA

In this paper we compare the results from a bending cantilever beam experiment with the theoretical values and COMSOL finite element simulation results. In the experiment a simple cantilever beam with a hole is loaded at the end. Measurements are recorded by four strain gauges mounted on the beam, three near the hole and one at a location where the nominal stress is equivalent to that of a ...

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model

F. Allain, and A.G. Dixon
Worcester Polytechnic Institute, Worcester, MA, USA

A packed bed reactor consisting of spherical catalyst particles in a tube was simulated numerically. The steady-state pseudo-heterogeneous model consisted of a pseudo-continuum representation for the heat and mass transfer in the reactor tube. The reaction source terms were evaluated by explicitly solving a 1D spherical pellet model at each discretization point. The model implemented in COMSOL ...