Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Modeling Optical Nanoantenna Arrays with COMSOL Multiphysics

Z. Liu[1], X. Ni[1], and A. Kildishev[1]
[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

Optical nanoantennas have been of great interest recently due to their ability to support a highly efficient, localized surface plasmon resonance and produce significantly enhanced and highly confined electromagnetic fields. Such enhanced local fields have many applications such as biosensors, near-fieldscanning optical microscopy (NSOM), quantum optical information processing, enhanced Raman ...

Optimization of Carbon Nanotube Field Emission Arrays

B. L. Crossley[1], M. Kossler[1], P.J. Collins[1], R. A. Coutu Jr.[1], and L. A. Starman[1]

[1]Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA

Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An optimized triode configured CNT field emission array is developed using the COMSOL Multiphysics Electrostatics Application to adjust five key physical dimensions to investigate the effects on the enhanced electric field at the CNT emitter tips. The five dimensions studied are CNT ...

Multiphysics Simulation of a Packed Bed Reactor

A.E. Varela[1], and J.C. García[1]

[1]University of Carabobo, Valencia, Venezuela

Most reactor designs are based on pseudo homogeneous models. This paper studies the COMSOL simulation of a packed bed reactor using a 2-D heterogeneous model. The case considered was a packed reactor with spherical catalyst for oxidation of o-xylene in air to phthalic anhydride. Large differences in intra-pellet temperature were found in comparison with the average temperatures resulting from ...

Calculation of the Magnetic Field Intensity in a Rectangular Conductor Carrying Current in Electromagnetism Introductory Courses

J.C. Olivares-Galvan[1], I. Hernandez[2] , P.S. Georgilakis[3], and L.E. Campero[1]

[1]Universidad Autónoma Metropolitana, Azcapotzalco, Mexico, D.F.
[2]Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[3]School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

This paper describes a type of didactic material used when teaching electromagnetism. The purpose is to guide the students to verify the results of a Finite Element (FE) simulation using those obtained analytically. This procedure has shown to be of great help during their learning of the FE method. The example in this paper uses a 2D analytical method to estimate the magnetic field generated by ...

An Analysis of Skimboard Hydrodynamics

N.D. Barnett[1], and E. Gutirrez-Miravete[2]
[1]General Dynamics-Electric Boat, Kingston, Rhode Island, USA
[2]Rensselaer at Hartford, Hartford, Connecticut, USA

This paper report on a study of the hydrodynamics of skimboards and surfboards using the computational fluid dynamics (CFD) module in COMSOL. The study analyzes the flow in a thin water layer underneath a skim board in a 2-D Cartesian coordinate. Three different sets of boundary conditions were employed and one of them produced the best agreement with previous findings.

Electromagnetic Wave Simulation in Fusion Plasmas

O. Meneghini[1], and S. Shiraiwa[1]
[1]Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

COMSOL has been used to model the propagation of electromagnetic waves in fusion plasmas. For the first time, a finite element method has been used to solve the wave propagation for realistic fusion plasma parameters in the lower hybrid and ion cyclotron frequency ranges. Moreover, for lower hybrid waves, a new efficient iterative algorithm has been developed to take into account the dispersive ...

Implementation of a Paraxial Optical Propagation Method for Large Photonic Devices

J.E. Toney[1]

[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of COMSOL Multiphysics with MATLAB to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials. In this paper we ...

Boundary conditions in multiphase, porous media, transport models of thermal processes with rapid evaporation

A. Datta[1], and A. Halder[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA

In modeling of thermal processing of biological materials with rapid evaporation, it is critical to provide boundary conditions consistent with the phenomena happening at the surface to accurately predict spatial temperature and moisture content for quality and safety assurance. Boundary conditions in a mathematical model are as important as governing equations itself and describe how the heat ...

Importance of Assembly Discontinuity Factors In Simulating Reactor Cores Containing Highly Heterogeneous Fuel Assemblies

G. Gomes[1]
[1]Atomic Energy of Canada Limited, Mississuaga, Ontario, Canada

To assess the importance of assembly discontinuity factors (ADF), a highly heterogeneous reactor core was simulated using a COMSOL model in which ADF are not used. The resulting errors in assembly powers were found to be unacceptably high. This indicates that for highly heterogeneous cores such as one with MOX and LEU fuel assemblies, the use of techniques that counter the effect of ...

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh to accommodate the moving boundary. The electromagnetics model consist of four multiphysics models, two ...