Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and application of mechanical forces to cells, etc. A COMSOL Multiphysics model is developed in 2D ...

Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System

D. Groulx[1], and W. Ogoh[1]

[1]Mechanical Engineering Department, Dalhousie University, Halifax, Nova Scotia, Canada

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical processes encountered in the flow of water, the heat transfer by conduction and convection, and the phase ...

Quasi-TEM Analysis of Multiconductor Transmission Lines Embedded in Layered Dielectric Region

S.M. Musa[1], and M.N.O. Sadiku[1]
[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the quasi-TEM two-dimensional (2D) approach for the analysis of multiconductor transmission lines interconnect in single and two-layered dielectric region using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is as suitable and effective as other ...

Reynolds Number Dependent Porous Media Flow Using the Brinkman Equation

R. Rieck[1], A. Bénard[1], and C. Petty[1]
[1]Michigan State University, Michigan, USA

Porous media fluid dynamic modeling has been widely explored and utilized in many academic and industrial applications. Cross flow filtration being one attractive application, whereas the fluid and filtrate flow parallel the porous media, and thereby induce shearing stress along the membrane surface to reduce fouling. In modeling porous media flow, it is common to describe the porous domain by ...

Designing B-field Coils from the Inside-Out

C.B. Crawford[1], Y. Shin[1], and G. Porter[1]
[1]Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, USA

Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor / magnetic material configuration, using FEA software to calculate the resulting field, modifying the configuration, and iterating to produce the desired field. Our method involved solving the classical Laplace equation on regions with imposed boundary conditions, which was implemented ...

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...

Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation

S. Sihn[1,2], and A.K. Roy[2]

[1]Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
[2]University of Dayton Research Institute, Dayton, Ohio, USA

COMSOL Multiphysics was used to solve a phonon Boltzmann transport equation (BTE) for nanoscale heat transport problems. One dimensional steady-state and transient BTE problems were successfully solved based on finite element and discrete ordinate methods for spatial and angular discretizations, respectively, by utilizing the built-in feature of the COMSOL, Coefficient Form of PDE.

Rapid Prototyping of Biosensing Surface Plasmon Resonance Devices using COMSOL & Matlab software

J.J. Dubowski[1], and D.Carrier[1]
[1]Department of Electrical and Computer Engineering, Université de Sherbrooke, Quebec, Canada

We present a Finite Element Method simulation procedure that allows rapid development of prototype devices comprising novel self-referenced interference SPR (surface plasmon resonance) biosensing microstructures. The procedure takes advantage of  COMSOL Multiphysics and MATLAB software and their bi-directional link. The simulation is made using COMSOL RF Module, 2D harmonic propagation ...

Multiphysics Simulation of a Packed Bed Reactor

A.E. Varela[1], and J.C. García[1]

[1]University of Carabobo, Valencia, Venezuela

Most reactor designs are based on pseudo homogeneous models. This paper studies the COMSOL simulation of a packed bed reactor using a 2-D heterogeneous model. The case considered was a packed reactor with spherical catalyst for oxidation of o-xylene in air to phthalic anhydride. Large differences in intra-pellet temperature were found in comparison with the average temperatures resulting from ...

A Study of Curved Flexures for MEMS

Minhee Jun[1], and Jason V. Clark[1]
[1]Departments of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

Large deflection actuators are becoming increasingly important for microsystems. Since actuation forces are usually small, large deflection actuators usually require flexures with low stiffness. Rectangular serpentine flexures are often used for such actuators due to their low stiffness and large linear deflection range. In this paper we investigate the performance of curved serpentine flexures ...