Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Stochastic Modeling of Biological Systems – Ranking the Model Parameters of the Human Vocal Folds

D. Cook[1]
[1]New York University, New York, USA

Computational models of biological systems are becoming more and more common in medical research areas. Evidence of this can be found by examining the number of articles containing the term “finite element” in the expansive National Institutes of Health (NIH) digital research archive PubMed. Numerical modeling of biological systems allows the execution of “computational ...

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. A two-substrate mathematical model of microscale optical glucose sensors in ...

Modeling of Shrinkage Behavior in Cement Paste Using Thermal-structural Interaction

T. Chen[1], and P.G. Ifju[1]

[1]University of Florida, Gainesville, Florida, USA

This paper describes using thermal-structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain material properties from the complex geometry used in the tests. The finite element model is created using COMSOL ...

Quasi-TEM Analysis of Multiconductor Transmission Lines Embedded in Layered Dielectric Region

S.M. Musa[1], and M.N.O. Sadiku[1]
[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the quasi-TEM two-dimensional (2D) approach for the analysis of multiconductor transmission lines interconnect in single and two-layered dielectric region using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is as suitable and effective as other ...

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Effect of S-p Relation Model on DNAPL Migration Simulation Result

H. Ishimori[1], and K. Endo[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

To consider effective counter measures against ground water contaminated with dense non-aqueous phase liquids (DNAPLs) such as chlorinated solvents, it is first important to understand the mechanism of their migration in heterogeneous aquifer. In addition, numerical analysis models to simulate such a complex migration in heterogeneous aquifer are required. The displacement pressure, which ...

COMSOL Multiphysics Modeling of Rotational Resonant MEMS Sensors with Electrothermal Drive

S. Nelson[1], and M. Guvench[1]
[1]University of Southern Maine, Gorham, Maine, USA

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane rotational resonating MEMS sensor. The resonating sensor disk is driven by thermal expansion and contraction of the support tethers due to AC joule heating. The resonant frequency is sensed by stationary contacts. For cost reduction, the relatively simple, low cost SOIMUMPS fabrication process is ...

Control of Preheating Process of Casting Die as Distributed Parameter System

C. Belavý[1], G. Hulkó[1], K. Ondrejkovic[1], and P. Zajícek[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper distributed parameter system models in the form of lumped-input/distributed-output systems are introduced and modeling of temperature fields of the die in the benchmark casting plant is presented. Temperature fields were modeled and studied using a finite element method based software package COMSOL Multiphysics and numerical models in the form of a lumped-input/distributed-output ...

121 - 129 of 129 First | < Previous | Next > | Last