Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abramgem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

D. Song[1], R. Gupta[1], and Chhabra[2]

[1]West Virginia University, Morgantown, West Virginia, USA
[2]Indian Institute of Technology, Kanpur, India

Heat transfer from a sphere having a uniform temperature and falling axially in a cylindrical tube filled with an incompressible power-law liquid is numerically investigated. The governing equations for simultaneous flow around a confined sphere and heat transfer to power-law fluids were solved numerically using COMSOL Multiphysics. It was found that the wall effects on the mean Nusselt number ...

Flow and Mixing in the Liquid between Bubbles

B. Finlayson[1]
[1]Department of Chemical Engineering, University of Washington, Seattle, Washington, USA

Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three-dimensions. In COMSOL Multiphysics, an integration coupling variable was used by solving the problem in two dimensions ...

Coupled Heat and Mass Transfer Processes in Enclosed Environments

J.L.Wilson[1], and R. Dwivedi[1]

[1]New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA

Geothermally driven natural convection in enclosures is a ubiquitous process occurring in many physical environments such as caves, mines, etc. We have numerically simulated laminar and turbulent natural convection in isolated air-filled cavities, buried in a more conductive rock mass. We have modeled heat transfer using COMSOL's Convection and Conduction mode. To better understand the ...

Finite element analysis approach for optimization of enzyme activity for enzymatic bio-fuel cell

C. Wang[1], Y. Song[1], Y. Parikh[1], and J.H. Yang[1]
[1]Department of Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Enzymatic biofuel cells (EBFCs) are miniature implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study, we focused on a three dimensional EBFC chip with highly dense micro-electrode arrays, fabricated by carbon-micro-electro-mechanical-system (C-MEMS) techniques. Glucose oxidase (GOx) is immobilized on anodes for the ...

Reliability Evaluation for Static Chamber Method at Landfill Sites

H. Ishimori[1], K. Endo[1], and M. Yamada[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

In this study, COMSOL Multiphysics was used for the reliability evaluation for static chamber method at landfill sites. Static chamber method, which measures landfill gas emission fluxes, is widely used at landfill sites for the monitoring of greenhouse gas emission such as methane and carbon dioxide. The accuracy and the reliability of static chamber method are dependent on the measuring ...

Simulation of the Turbulent Flow in HEV Static Mixers : Mixing of Ethanol with Gasoline

A. Eissa[1]
[1]Department of Chemical Engineering, Cairo University, Giza, Egypt

Mixing is a typical unit operation that occurs almost in all chemical industries. Static – alternatively termed motionless – mixers are being widely used due to their low power consumption, low capital investment, minimal maintenance costs and versatility. The traditional helical mixing element is mainly used for in-line blending under laminar and transitional flow conditions. The ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

Modeling of Drying of Cellular Ceramic Structures: Coupled Electromagnetic and Multiphase Porous Media Model

A. Dhall[1], G. Peng[2], G. Squier[2], M. Geremew[3], L. Bogaczyk[2], J. George[3], W.A. Wood[3], and A.K. Datta[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
[2]Manufacturing Technology & Engineering, Corning Inc., Sullivan Park, Corning, New York, USA
[3]Corporate Research, Corning Inc., Sullivan Park, Corning, New York, USA

Cellular ceramic substrates are extensively used for pollution control systems in vehicles. The manufacturing process of them can involve microwave drying. In this study, we describe the development of a modeling framework for the microwave drying process of these substrates. The transport model is implemented in COMSOL 3.5a using 4 PDEs: 1) Convection-Conduction for temperature, 2) Convection ...

Modeling of Nerve Stimulation Thresholds and Their Dependence on Electrical Impedance with COMSOL

P. Krastev[1], and B. Tracey[1]
[1]Neurometrix, Inc., Waltham, Massachusetts, USA

Nerve localization is important for applications in regional anesthesia. Localization is achieved by stimulating the nerve with an electric field produced by a current from a needle inserted into the body of the patient, close to the target nerve.  Modeling of the electric field in close proximity to the nerve may help to explain observed variations in threshold currents and can help to ...

COMSOL in the Academic Environment at USNA

K. Mcilhany[1], and R. Malek-Madani[2]
[1]Department of Physics U. S. Naval Academy, Annapolis, Maryland, USA
[2]Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland, USA

The U.S. Naval Academy has used COMSOL as a research tool for many years. Academic usage of COMSOL for student use has only begun in the last five years. Student involvement comes in four types, course-wide usage, focused course related work, student projects and semester-long research projects. A summary of how COMSOL has been successfully used at USNA will be given, showing examples of ...

1 - 10 of 129 First | < Previous | Next > | Last