Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Investigation of Natural Convective Air Flow Field through Comb Channels

R. Umhack, M. Rainer, M. Tamerle, and G. Hillmer
Process-, Environmental- and Bio- technology, MCI - University of Applied Sciences, Innsbruck, Austria

A new type of radiator with a package of combs, to gain a larger area for heat exchange, instead of trapezoidal convector plates, is investigated. The main aim is to find the optimal comb diameter. To solve this problem, CFD (computational fluid dynamics) with COMSOL Multiphysics is used. A chart showing radiator power was produced, which includes radiator power for different temperatures and ...

Lava Tubes at Shallow Depth

M. Di Bari, and G. Zito
University of Bari, Italy

Many theoretical studies concerning lava tubes focus on the thermal disturbances generated on the earth surface. Recently a solution was suggested, where a lava tube located at a great depth h in the soil, where the ratio between h to the major axis of the ellipse a is higher than 10. However, lava tubes more frequently are located at shallower depths.  In this work we ...

Comparison between COMSOL and RFSP-IST for a 2-D Benchmark Problem

G. Gomes
Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

RFSP-IST (Reactor Fueling Simulation Program) is a computer code used for the full-core neutronics design and analysis of CANDU® reactors. RFSP-IST calculates the static flux and power distributions in the core by solving the neutron diffusion equation in two energy groups. For validation purposes, results from RFSP-IST are often compared with those from other codes. This paper documents the ...

Modeling Dispersal of Genetic Information in Structured Agricultural Landscapes with Partial Differential Equations

K. Lipsius, and O. Richter
Institute of Geoecology, TU Braunschweig, Germany

We present a model for plant dispersal in agricultural landscapes to evaluate the gene dispersal from genetically modified (GM) plants. Dispersal from seed and pollen is modeled with partial differential equations. In scenarios, we investigated the effect of roadside application of non-selective herbicides on dispersal of herbicide tolerant oilseed rape (HT OSR). We showed that OSR growing on ...

151–154 of 154
Next |
Last