A Galeria de Modelos possui arquivos do COMSOL Multiphysics de várias áreas de aplicação incluindo elétrica, mecânica, escoamento e química. Você pode baixar modelos prontos e também tutoriais passo-a-passo para montar seu modelo, e usá-lo como ponto de partida para o seu próprio modelo. Use a função de busca "Quick Search" para encontrar modelos na sua área de interesse e faça o login ou o seu cadastro no COMSOL Access, cadastrando a sua licença do COMSOL, para poder baixar os arquivos.

Energy Conservation with Thermoacoustics

This small tutorial model studies energy conservation in a small conceptual test setup. The model has an inlet and outlet and a Helmholtz resonator with a very narrow neck. The acoustics in the narrow neck are modeled with Thermoacoustic for a detailed analysis of the thermal and viscous losses. In order to study and verify energy conservation, the model compares the total dissipated energy in ...

Poroelastic Waves with Thermal and Viscous Losses (Biot-Allard Model)

In applications where pressure waves and elastic waves propagate in porous materials filled with air both thermal and viscous losses are important. This is typically the case in insulation materials for room acoustics or lining materials in car cabins. Another example is porous materials in mufflers in the automotive industry. In many cases these materials can be modeled using the Poroacoustic ...

Linear Wave Retarder

Combinations of optical devices such as polarizers and wave retarders can be used to control the intensity and polarization of transmitted radiation. In this model, two linear polarizers with orthogonal transmission axes are used to reduce the intensity of a ray to zero. Then the intensity and polarization of the transmitted ray are analyzed when a quarter-wave or half-wave retarder is placed ...

Slip Flow Benchmark

This model is a benchmark model for the Slip Flow interface. It is based on both analytic and numeric calculations. Air at atmospheric pressure flows through a conducting micro-channel connecting two reservoirs maintained at different temperatures. A flow between the two reservoirs develops as a result of thermal creep along the channel wall, which in turn produces a pressure gradient. At steady ...

Eigenmodes in a Muffler

In this model, compute the propagating modes in the chamber of an automotive muffler. The geometry is a cross-section of the chamber in the Absorptive Muffler example. The model’s purpose is to study the shape of the propagating modes and to find their cut-off frequencies. As discussed in the documentation for the Absorptive Muffler, some of the modes significantly affect the damping of the ...

Rotating Galaxy

This tutorial model shows how to add customized particle-particle interaction forces. In this example the gravitational force between 2500 stars in a galaxy is modeled. The galaxy initially rotates as a rigid body, then begins to change shape due to gravitational forces.

Circular Waveguide Filter

A circular waveguide filter is designed using a 2D axisymmetric model. Six annular rings added to the waveguide form circular cavities connected in series, and each cavity cutoff frequency is close to the center frequency of the filter. The simulated S-parameters show a bandpass frequency response.

Ultrasound Flow Meter with Generic Time-of-Flight Configuration - new

Knowing the velocity of a moving fluid is important in all cases where the fluid is used to transport material or energy. In the time-of-flight or transit-time method for determining flow velocity, an ultrasonic signal is transmitted across the main flow in a pipe to noninvasively determine its velocity. By transmitting the signal at an angle relative to the main flow, the ultrasound signal will ...

Heterogeneous Model of a Porous Catalyst

A catalyst particle with a hypothetical microstructure is described in detail. The heterogeneous description is approximated in a second model with a homogeneous particle and the results from the two approaches are compared. See: https://www.comsol.se/blogs/modeling-approaches-in-heterogeneous-catalysis/

Inflation of a Spherical Rubber Balloon - Membrane Version

The purpose of this model is to illustrate how the Membrane interface can be used to model thin hyperelastic structures. The example is identical to the Model Library model 'Inflation of a spherical rubber balloon', except that the Membrane interface is used instead of the Solid Mechanics interface.