A Galeria de Aplicações possui tutorias sobre o COMSOL Multiphysics® e aplicativos de demonstração pertinentes às áreas de elétrica, mecânica estrutural, acústica, escoamento e química. Você pode usar esses exemplos como um ponto de partida para o seu próprio trabalho de simulação baixando o modelo do tutorial ou o aplicativo e suas instruções. Use a função "Busca Rápida" para encontrar modelos da sua área de interesse. Para baixar os arquivos MPH, faça o login, ou se cadastre, no COMSOL Access usando uma licença válida do COMSOL, para poder baixar os arquivos MPH. Note que muitos dos exemplos disponibilizados aqui também podem ser acessados através da Application Libraries que faz parte do software COMSOL Multiphysics® e está disponível a partir do menu File.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Electrocoating of a Car Door

This example models electrocoating of paint onto a car door in a time-dependent simulation. The deposited paint is highly resistive which results in lowered local deposition rates for coated areas. A primary current distribution in combination with a film resistance model is used to describe the charge transport in the electrolyte. The model is in 3D and uses an imported CAD geometry.

Electrodeposition of a Microconnector Bump with Deforming Geometry in 3D

This model simulates the shape evolution of a microconnector bump over time as copper deposits on an electrode surface. Transport of cupric ions in the electrolyte occurs by convection and diffusion. The electrode kinetics are described by a concentration dependent Butler-Volmer expression. The model is an extension to 3D of the Electrodeposition of a Microconnector Bump in 2D example.

Secondary Current Distribution in a Zinc Electrowinning Cell

This is a model of the secondary current distribution in a zinc electrowinning cell. The model investigates the impact on the current distribution when changing the electrode alignment in a parametric study. The geometry is in 2D.

Electrodeposition of a Microconnector Bump in 2D

This model demonstrates the impact of convection and diffusion on the transport-limited electrodeposition of a copper microconnector bump (metal post). Microconnector bumps are used in various types of electronic applications for interconnecting components, for instance liquid crystal displays (LCDs) and driver chips. The location of the bumps on the electrode surface is controlled by the use ...

Electrochemical Machining of a Micro Bore

For several high-precision applications, especially in hydraulic systems and fuel injectors, micro bores are needed. In most cases the shape of the injection hole, especially the edge rounding, has a significant influence on the atomization of fluids and therefore on the combustion process. Usually these micro bores are machined by electrical discharge machining (EDM). Due to the process ...

Rotating Cylinder Hull Cell

Rotating cylinder Hull cells are an important experimental tool in electroplating and electrodeposition and are used for the measurement of nonuniform current distribution, mass transport, and throwing power of plating baths. The model reproduces the results for a commercially available cell (RotaHull(R)) as published in paper [1]. In particular, it investigates the primary, secondary, and ...

Fountain Flow Effects on Electrodeposition on a Rotating Wafer

This example extends the analysis made in the model Electrodeposition on a Resistive Patterned Wafer by including the diffusion and convection of copper ions in the electrolyte. The coupled mass transport convection-diffusion effects are of interest in this type of reactor since they will be accentuated towards the rim of the wafer, limiting the current density. This will counter balance the ...

Copper electrodeposition in a trench using the level set method

The present model example is based on Copper Deposition in a Trench model available in Electrodeposition Application Library. The nonuniform deposition along the trench surface leads to formation of a cavity/void. Since the Deformed Geometry interface cannot handle topological changes, the original model cannot be extended to simulate deposition after cavity formation. In the present model, ...

Superfilling Electrodeposition

This example illustrates the concept of superfilling in electrodeposition. The deposition rate is accelerated in concave areas of the surface, where the concentration of a surface catalyst is increased due to the area contraction of the moving boundary.

Electrode Growth Next to an Insulator

This example shows how to model secondary current distribution and electrode growth with a moving geometry. To avoid numerical instabilities, a seed layer is introduced in the initial geometry to obtain a right angle at the edge between the growing electrode and the insulator.