A Galeria de Aplicações possui tutorias sobre o COMSOL Multiphysics® e aplicativos de demonstração pertinentes às áreas de elétrica, mecânica estrutural, acústica, escoamento e química. Você pode usar esses exemplos como um ponto de partida para o seu próprio trabalho de simulação baixando o modelo do tutorial ou o aplicativo e suas instruções. Use a função "Busca Rápida" para encontrar modelos da sua área de interesse. Para baixar os arquivos MPH, faça o login, ou se cadastre, no COMSOL Access usando uma licença válida do COMSOL, para poder baixar os arquivos MPH. Note que muitos dos exemplos disponibilizados aqui também podem ser acessados através da Application Libraries que faz parte do software COMSOL Multiphysics® e está disponível a partir do menu File.


Superfilling Electrodeposition

This example illustrates the concept of superfilling in electrodeposition. The deposition rate is accelerated in concave areas of the surface, where the concentration of a surface catalyst is increased due to the area contraction of the moving boundary.

Copper Electroless Deposition

Electroless deposition or plating is a non-galvanic plating method that does not require any external electrical power. This technique is typically used for electroless plating of nickel, silver, gold and copper. In electroless deposition, partial oxidation and reduction reactions occur at the same electrode surface. The potential difference that exists between the equilibrium potentials for ...

Electrodeposition of a Microconnector Bump in 2D

This model demonstrates the impact of convection and diffusion on the transport-limited electrodeposition of a copper microconnector bump (metal post). Microconnector bumps are used in various types of electronic applications for interconnecting components, for instance liquid crystal displays (LCDs) and driver chips. The location of the bumps on the electrode surface is controlled by the use ...

Electrodeposition on a Resistive Patterned Wafer

This example models time-dependent copper deposition on a resistive wafer in a cupplater reactor. As the deposited layer builds up, the resistive losses of the deposited layer decreases. The benefit of using a current thief for a more uniform deposit is demonstrated.

Electrodeposition of a Microconnector Bump with Deforming Geometry in 3D

This model simulates the shape evolution of a microconnector bump over time as copper deposits on an electrode surface. Transport of cupric ions in the electrolyte occurs by convection and diffusion. The electrode kinetics are described by a concentration dependent Butler-Volmer expression. The model is an extension to 3D of the Electrodeposition of a Microconnector Bump in 2D example.

Rotating Cylinder Hull Cell

Rotating cylinder Hull cells are an important experimental tool in electroplating and electrodeposition and are used for the measurement of nonuniform current distribution, mass transport, and throwing power of plating baths. The model reproduces the results for a commercially available cell (RotaHull(R)) as published in paper [1]. In particular, it investigates the primary, secondary, and ...

Electrode Growth Next to an Insulator

This example shows how to model secondary current distribution and electrode growth with a moving geometry. To avoid numerical instabilities, a seed layer is introduced in the initial geometry to obtain a right angle at the edge between the growing electrode and the insulator.

Fountain Flow Effects on Electrodeposition on a Rotating Wafer

This example extends the analysis made in the model Electrodeposition on a Resistive Patterned Wafer by including the diffusion and convection of copper ions in the electrolyte. The coupled mass transport convection-diffusion effects are of interest in this type of reactor since they will be accentuated towards the rim of the wafer, limiting the current density. This will counter balance the ...

Copper electrodeposition in a trench using the level set method

The present model example is based on Copper Deposition in a Trench model available in Electrodeposition Application Library. The nonuniform deposition along the trench surface leads to formation of a cavity/void. Since the Deformed Geometry interface cannot handle topological changes, the original model cannot be extended to simulate deposition after cavity formation. In the present model, ...

Aluminum Anodization

When anodizing aluminum, the surface is electrochemically altered to form an abrasive and corrosion-resistive Al{:sub}2{:/sub}O{:sub}3{:/sub} film. The electrode kinetics during the process are only marginally affected as the oxide layer grows, so a stationary analysis of the current distribution is sufficient to determine the uniformity of this layer’s thickness. Anode kinetics from ...

11–20 of 20
Next |
Last