A Galeria de Modelos possui arquivos do COMSOL Multiphysics de várias áreas de aplicação incluindo elétrica, mecânica, escoamento e química. Você pode baixar modelos prontos e também tutoriais passo-a-passo para montar seu modelo, e usá-lo como ponto de partida para o seu próprio modelo. Use a função de busca "Quick Search" para encontrar modelos na sua área de interesse e faça o login ou o seu cadastro no COMSOL Access, cadastrando a sua licença do COMSOL, para poder baixar os arquivos.

Isothermal HI Reactor

For a perfectly mixed reactor with a predefined constant temperature, the reacting system’s energy balance is not needed to describe the system behavior. The behavior is defined as the composition and the production or consumption of species over time. Furthermore, because the reactor is perfectly mixed, the Reaction Engineering interface can also set up a model even though it has no information ...

HI Batch Reactor

This tutorial example illustrates the versatility of the *Reaction Engineering* interface. The hydrogen iodine reaction is modeled in a batch reactor with constant volume. Both isothermal and non-isothermal conditions are modeled.

Degradation of DNA in Plasma

Biotechnology is a rapidly growing area in the pharmaceutical sciences. One example of a clinical application is gene therapy, where it is possible to produce proteins in vivo, using the body’s own mechanisms for protein production. Major issues in gene delivery involve the transport of plasmid DNA (pDNA) to target sites and the conversion between different forms of pDNA. This example ...

Startup of a Continuous Stirred Tank Reactor

The hydrolysis of propylene oxide into propylene glycol is an important chemical process with 400,000 metric tons produced worldwide each year. Propylene glycol finds wide application as a moisturizer in foods, pharmaceuticals, and cosmetics. In this example, the startup phase of a continuous stirred tank reactor (CSTR) used to produce propylene glycol is investigated. The non-isothermal ...

Tank Series with Feedback Control

This example illustrates how to set up and solve a tank-in-series model in 0D using the Reaction Engineering interface. The model treats a series of three consecutive tank reactors. A feedback loop continuously adjusts the inlet concentration of the first tank to keep the concentration at the outlet of the last reactor close to a set level.

Neutralization of Chlorine in a Scrubber

This example studies the kinetics of the neutralization of chlorine gas in water solution. The model assumes that the fluid volume is perfectly mixed and constant. This means that the chlorine has dissolved to an almost saturated state (1·10-2 mol/m3) and that the hydroxide has also mixed well throughout, as would be the case for a very small amount of fluid in a scrubber. The study allows ...

Modeling of an Enzyme-Based Biofuel Cell Anode

Enzyme-based biofuel cells (EBFCs) use biomass and specific enzymes known as biocatalysts in order to convert chemical energy into electrical energy. At the anode of an EBFC, the biomass (substrate) is oxidized to produce protons and electrons. Mediators are used in the anode to shuttle the electrons from enzymes to electrodes. At the cathode, the oxidant (oxygen) reacts with the protons and ...

Parameter Estimation for Nonideal Reactor Models

Real reactors can be modeled as combinations of ideal reactors. In this example the so-called "Dead zone model" is utilized. Two ideal CSTRs with interchange are set up to model the real reactor. One CSTR represents the highly agitated region and the other the less agitated region. For this, two parameters relating the volume and exchange rate of the two regions need to be found by comparing ...

Nonisothermal HI Reactor

In the case of a perfectly mixed nonisothermal system, you have to set up both the time-dependent material and energy balances. There are no spatial concentration gradients because the system is perfectly mixed, so the Reaction Engineering interface can create a model without evaluating the material-transport properties.

Determining the Reaction Order from Pressure-Time Data

This model shows how to use the Parameter Estimation feature in the Reaction Engineering interface to find the rate constant and reaction order for the gas phase decomposition of di-tert-butyl-peroxide.