A Galeria de Aplicações possui tutorias sobre o COMSOL Multiphysics® e aplicativos de demonstração pertinentes às áreas de elétrica, mecânica estrutural, acústica, escoamento e química. Você pode usar esses exemplos como um ponto de partida para o seu próprio trabalho de simulação baixando o modelo do tutorial ou o aplicativo e suas instruções. Use a função "Busca Rápida" para encontrar modelos da sua área de interesse. Para baixar os arquivos MPH, faça o login, ou se cadastre, no COMSOL Access usando uma licença válida do COMSOL, para poder baixar os arquivos MPH. Note que muitos dos exemplos disponibilizados aqui também podem ser acessados através da Application Libraries que faz parte do software COMSOL Multiphysics® e está disponível a partir do menu File.


Laminar Flow in a Baffled Stirred Mixer

This model exemplifies the use of the Rotating Machinery interface, which allows you to model moving rotating parts in, for example, stirred tanks, mixers, and pumps. The Rotating Machinery interface formulates the Navier-Stokes equations in a rotating coordinate system. Parts that are not rotated are expressed in the fixed material coordinate system. The rotating and fixed parts need to be ...

Particle Tracing in a Micromixer

Micromixers can either be static or dynamic depending on the required mixing time and length scale. For static mixers, the Reynolds number has to be suitable high to induce turbulence enhanced mixing. Often micromixers operate in the laminar flow regime due to their small characteristic size. The diffusivity of a solute in the flowing fluid may also be extremely small, on the order of 10?10m2/s. ...

Turbulent Flow Over a Backward Facing Step

The backward facing step is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion. Spatial variations in the velocity field cause production of turbulence outside the wall region and its interaction with ...

Two-Phase Flow Modeling of a Dense Suspension

Liquid-solid mixtures (suspensions) are important in a variety of industrial fields, such as oil and gas refinement, paper manufacturing, food processing, slurry transport, and wastewater treatment. Several different modeling approaches have been developed by the CFD community, ranging from discrete, particle-based methods to macroscopic, semi-empirical two-phase descriptions. This model ...

Syngas Combustion in a Round-Jet Burner

The model simulates non-premixed turbulent combustion of syngas (synthesis gas) in a simple round-jet burner. Syngas is a gas mixture, primarily composed of hydrogen, carbon monoxide and carbon dioxide. The name syngas relates to its use in creating synthetic natural gas. In the model, syngas is fed from a pipe into an open region with a slow co-flow of air. Upon exiting the pipe, the syngas ...

Flow of Oldroyd-B Viscoelastic Fluid

Many complex fluids of interest exhibit a combination of viscous and elastic behavior under strain. Examples of such fluids are polymer solutions and melts, oil, toothpaste, and clay, among many others. The Oldroyd-B fluid presents one of the simplest constitutive models capable of describing the viscoelastic behavior of dilute polymeric solutions under general flow conditions. Despite the ...

Sloshing Two-Phase Flow in an Automobile Fuel Tank

Sloshing occurs in the tanks of vehicles during rapid acceleration and braking. This can be significantly reduced by inserting internal baffles into the tanks, positioned in a way so that the amplitude of the sloshing oscillation is dampened. Simulation can help to estimate effective designs for the baffles. The model investigates the two-phase flow in a realistic tank geometry, while tracking ...

Non-Newtonian Flow

This model shows the influence of shear rate dependent viscosity on the flow of a linear polystyrene solution. For this type of flow, you can use the Carreau viscosity model. Due to rotational symmetry, it is possible to reduce the model dimensions from 3D to axisymmetric 2D.

3D Supersonic Flow in a Channel With a Bump

This example models 3D supersonic flow, including the effect of a shock, in a straight channel with a small obstacle on one of the walls. As the flow hits the obstacle, shock waves are diffracted from the obstacle and walls of the channel. The propagating shock waves form a pattern in the velocity profile and density distribution. The model makes use of the adaptive mesh refinement feature in ...

Vibrating Plate in a 2D Viscous Parallel Plate Flow

This is a small 2D demonstration model that couples the linearized Navier-Stokes Frequency Domain, the Solid Mechanics, and the Creeping Flow physics interfaces to model the vibrations of a plate located in a 2D viscous parallel plate flow. This type of model is used to model fluid structure interaction (FSI) in the frequency domain. For simplicity the flow is assumed to be a Creeping flow. ...