Busca Rápida

Electrical Signals in a Heart

Application ID: 981

Modeling the electrical activity in cardiac tissue is an important step in understanding the patterns of contractions and dilations in the heart. The heart produces rhythmic electrical pulses, which trigger the mechanical contractions of the muscle. A number of heart conditions involve an elevated risk of re-entry of the signals. This means that the normal steady pulse is disturbed, a severe and acute condition which is often referred to as arrhythmia.

Two mathematical models describing different aspects of electrical signal propagation in cardiac tissue are presented here: the FitzHugh-Nagumo equations and the Complex Ginzburg-Landau equations, both of which are solved on the same geometry.

This model is kindly provided by Prof. Simonetta Filippi and Dr. Christian Cherubini from University Campus Biomedico di Roma, Italy.

This model is included as an example in the following products:

COMSOL Multiphysics®

The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Descrição dos Produtos and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.