Por página:
Busca

Blog Posts Tagged Molecular Flow Module

Efficiently Analyze Charge Exchange Cell Designs Using Applications

March 5, 2019

Due to their neutral ion beam, charge exchange cells are used in processes ranging from ion implantation and semiconductor fabrication to synchrotron devices and medical research.

App: Evaluating the Design of an Ion Implanter

June 17, 2015

The semiconductor industry uses ion implanters to implant dopants into wafers. To optimize the design of these devices, engineers need to quickly and easily test a wide range of parameters. Simulation apps help streamline the design process of ion implanters by sharing the capabilities of a simple and fully customizable interface with colleagues who don’t have a simulation background. Here, we introduce you to our Ion Implanter Evaluator demo app.

Simulating UHV/CVD and Silicon Growth on a Wafer Substrate

May 25, 2015

Chemical vapor deposition (CVD) is popular in the semiconductor industry for its ability to produce high-quality, pure, and extremely strong materials. Ultrahigh vacuum CVD (UHV/CVD) requires complex equipment and very high temperatures. To increase efficiency and control costs, engineers can simulate this complex process. Here, we use the growth of silicon wafers as an example.

Modeling Beam Neutralization with a Charge Exchange Cell

December 16, 2014

Charge exchange cells are often used as a way to obtain neutralized beams of energetic particles. In this blog post, we introduce a model of a simple charge exchange cell and analyze its neutralization efficiency.

Portable Cordless Vaccine Storage Device

June 24, 2014

The Passive Vaccine Storage Device (PVSD) is a highly advanced container that combines ingenuity and insulation technology to empower aid workers delivering vaccines to the toughest-to-reach corners of the globe. Designed as a prototype that improves upon earlier models of vaccine transportation devices, this compact apparatus was developed with all the necessary steps: careful planning, simulation, and testing.

Differentially Pumped Vacuum Systems for Spectroscopic Imaging

January 9, 2014

Spectroscopic imaging has been used for decades to map the chemical composition of material surfaces with atomic-scale resolution. In order to achieve adequate chemical specificity and spatial resolution during imaging, both the material sample and the imaging system are placed under high or ultra-high vacuum (UHV). In practice, materials are often used outside of vacuum environments and therefore it is also necessary to evaluate their surface properties at higher or ambient pressure. Differential pumping is the key to designing vacuum […]

Learn about Modeling Vacuum Systems in COMSOL

November 7, 2013

Until recently, simulation had not been widely used by vacuum system designers because of an absence of commercial simulation tools. Last October, my colleague James Ransley held a webinar about how to model vacuum systems using COMSOL Multiphysics. The webinar was a great success, and it inspired us to produce a dedicated product for modeling vacuum applications: the Molecular Flow Module (new with version 4.3b). This year, on November 21st, James will be giving a webinar explaining the new features […]

Molecular Flow Module: Simulate Rarefied Gas Flows in Vacuum Systems

May 16, 2013

Vacuum technology has many important applications, from semiconductor device and MEMS fabrication, to vacuum coatings for corrosion protection, optical films, and metallization. The new Molecular Flow Module provides vacuum engineers with previously unavailable tools for modeling gas flows within vacuum systems.


First
Previous
1–8 of 12
EXPLORE O BLOG COMSOL