How to Activate Material in Simulations of Manufacturing Processes

Mats Danielsson November 7, 2018

Material deposition is an essential ingredient in certain manufacturing processes, including welding and additive manufacturing. Say that you want to simulate such a manufacturing process. A challenge that you will face during the simulation is depositing material in a way that introduces it in a state of zero stress. Here, we look at the Activation functionality in the COMSOL Multiphysics® software and how it facilitates the simulation of material deposition.

Ler Mais

Caty Fairclough March 7, 2018

Additive manufacturing has a wide array of applications, such as creating custom medical devices, aerospace components, and artwork. With the list of potential uses continuing to grow, it’s important that this type of manufacturing can keep up with the demand. However, analyzing and optimizing this complex process can be difficult. What can engineers do to overcome this challenge?

Ler Mais

Caty Fairclough August 7, 2017

Metamaterials are artificial materials with properties that rely on a particular structural design rather than chemistry. Their structure is often complicated, making these materials challenging to fabricate. Here, we present numerical research that investigates one such material — a poroelastic metamaterial (made from a single material with voids) with the ability to expand under hydrostatic pressure.

Ler Mais

Bridget Cunningham July 4, 2017

Many manufacturing processes already benefit from selective laser melting. The potential for combining this technique with high-melting materials is clear, but there are challenges to consider. For instance, these materials have a much narrower processing window. To better understand their behavior in selective laser melting, one research group built a model to analyze the thermal and fluid dynamics of laser beam-matter interaction. Their results generated further momentum in extending the use of this technique to process refractory metals.

Ler Mais

Caty Fairclough December 22, 2016

In 3D printers, suboptimal cooling and cure rates can negatively affect the manufactured parts and components. By optimizing a 3D printer’s design, we can ensure the quality of the printed objects. One research group used simulation to analyze the cooling process and the resulting glass-transition temperature of the polymer in a 3D printer. Let’s look at how they modeled the extrusion of acrylonitrile butadiene styrene (ABS) from a 3D printer that uses fused-deposition modeling (FDM®).

Ler Mais

Aditi Karandikar December 23, 2015

3D printing, also known as additive manufacturing, has been a popular topic of discussion on the COMSOL Blog and throughout the scientific community. New initiatives have furthered the capabilities of this technology, while extending its reach in various fields of research, manufacturing, and design. With the help of COMSOL Multiphysics, researchers at the Netherlands Organization for Applied Scientific Research (TNO) are investigating the promise of 3D printing in the realm of material design.

Ler Mais

Bridget Cunningham July 23, 2015

3D printing has emerged as a popular manufacturing technique within a number of industries. The growing demand for this method of manufacturing has prompted greater simulation research behind its processes. Engineers at the Manufacturing Technology Centre (MTC) have identified their customers’ interest in a particular additive manufacturing technique known as shaped metal deposition. By building a simulation app, the team is better able to meet the demands of their customers while delivering more efficient and effective simulation results.

Ler Mais

Bridget Cunningham October 13, 2014

Over the years, the size and cost of 3D printers have decreased, offering new uses for this growing technology. In response to this development, more and more teachers have begun to utilize these devices within their classrooms, helping students learn in a hands-on way.

Ler Mais

Categorias

Bridget Cunningham August 22, 2014

In a recent blog post, we discussed the growth in 3D metal printing and its impact on manufacturing. Today, we shift our focus from the industry as a whole to a particular technique that has been instrumental in the production of metal prototypes, as well as plastic, ceramic, and glass materials — even coffee. Selective laser sintering has taken the world of 3D printing by storm.

Ler Mais

Categorias

Bridget Cunningham August 7, 2014

In the past, we have discussed the importance of material selection in 3D printing and how it can affect the integrity of the final product. With advancements in technology, the industry has evolved from the production of more simple materials, like plastics, to those of greater difficulty, such as metals. Here, we take a more in-depth look at 3D metal printing and its potential to revolutionize the manufacturing process.

Ler Mais

Categorias

Alexandra Foley December 4, 2013

In the past, we’ve discussed a few of the extraordinary uses of 3D printing (or additive manufacturing) technology by some innovative engineers, and even printed a few of our COMSOL models. In one of our previous posts on 3D printing, we discussed some of the limitations that this technique poses from both a consumer and manufacturing stand-point — you can only print one material at a time. Now however, as was mentioned in an article in Desktop Engineering, not only […]

Ler Mais

Categorias


Categorias


Tags

1 2