Why Is Ice Slippery Enough for Skiing and Skating?

Brianne Costa | December 2, 2016

Finding a scientific explanation for why ice is slippery seems simple enough, but it has actually been a subject of debate and confusion for centuries. As part of the world begins to bundle up for a blustery winter, let’s explore the science behind how the slipperiness of ice enables us to ski, skate, and even fall down in the parking lot.

Read More

Magnus Ringh | November 18, 2016

One dessert that is sure to amaze your dinner guests is the baked Alaska. This classic treat consists of ice cream placed on a bed of sponge cake and covered in meringue. Although the dessert goes into a hot oven to caramelize the meringue, the ice cream inside surprisingly remains frozen. In this blog post, we use the heat transfer simulation capabilities of the COMSOL Multiphysics® software to find out how the baked Alaska works.

Read More

Caty Fairclough | November 11, 2016

In the highly competitive world of professional cricket, every swing is important. To deliver powerful shots, a batsman needs a well-designed bat and knowledge of how to best use it. One way to improve a player’s batting skills, and perhaps design better bats, is to locate their so-called “sweet spots”. A research team from the University of the West Indies achieved this by performing a structural analysis with the COMSOL Multiphysics® software.

Read More

René Christensen | November 3, 2016

Today, guest blogger René Christensen of GN ReSound discusses the importance of acoustic topology optimization and how to apply it in COMSOL Multiphysics. Topology optimization is a powerful tool that enables engineers to find optimal solutions to problems related to their applications. Here, we’ll take a closer look at topology optimization as it relates to acoustics and how we optimally distribute acoustic media to obtain a desired response. Several examples will further illustrate the potential of this optimization technique.

Read More

Caty Fairclough | November 1, 2016

Ocean acoustic tomography systems measure temperature using an acoustic signal that travels between two instruments. These systems often need to cover a broad frequency band with low-frequency signals and require a high-power sound source. One option to achieve these goals is a tunable organ pipe, which balances efficiency and functionality. A researcher at the Advanced Technology Group, Teledyne Marine Systems used simulation to improve his tunable organ pipe design and compared the results to experimental tests.

Read More

Categories

Mateusz Stec | October 28, 2016

Imagine bending a metallic paper clip back and forth until, after a few repetitions, it breaks entirely. This is one example of fatigue failure, the most common type of structural collapse. In more severe cases, such failure can lead to collapse or malfunction in structures like car exhaust pipes and aircraft jet engines. To better understand and predict fatigue failure in elastoplastic materials, we can use the COMSOL Multiphysics® software to accurately model both the materials and the fatigue process.

Read More

Categories

Caty Fairclough | October 19, 2016

In certain food and pharmaceutical industries, different types of dryers are used to dry heat-sensitive products. Vacuum dryers offer one solution for removing water and organic solvents from these sensitive substances. For optimal vacuum dryer design performance, engineers need to balance the dual needs of a rapid drying time and high-quality end products. To achieve this, you can study the vacuum drying process with the COMSOL Multiphysics® software.

Read More

Pawan Soami | October 18, 2016

To accurately simulate a gear and obtain useful results, it is important to consider a number of elements behind the device’s design and how they are modeled. New features and functionality in the COMSOL Multiphysics® software provide you with the tools to address such properties and thus advance the reliability of your simulation studies. Today, we’ll review the various elements of gear modeling and explain how to account for them in our modeling processes.

Read More

Ed Gonzalez | October 11, 2016

Many polymers and biological tissues exhibit viscoelastic deformation, which has a time-dependent response even if the loading is constant in time. Linear viscoelasticity, where the stress depends linearly on the strain and strain rate, is a common approximation. We usually assume that the viscous part of the deformation is incompressible, so the volumetric deformation is purely elastic. In COMSOL Multiphysics® 5.2a, you can model large-strain viscoelasticity besides linear viscoelasticity. See how to use this material model in a biomedical application.

Read More

Linus Andersson | September 29, 2016

Perforations, in mufflers for example, enable partial sound transmission between chambers as well as in and out of pipes. When simulating perforates, it’s possible to draw and mesh each hole, but this increases the time it takes to solve the model. For a more efficient approach, we can apply a semitransparent boundary. Here, we’ll discuss several techniques for doing so as well as describe a method for computing the transfer impedance of the perforate.

Read More

Categories

Caty Fairclough | September 26, 2016

The fans in an airplane’s turbofan engine are one of its main sources of noise. In excess, this can cause a range of health problems, including hearing impairment, sleep disturbance, and stress-related illnesses. To optimize the design of turbofan engines to reduce noise pollution and its correlating side effects, you can turn to acoustic modeling. Our jet pipe tutorial model speaks to the benefits of using such an approach.

Read More

Categories


Categories


Tags

1 2 3 28